18 research outputs found

    Atlantic water variability on the SE Greenland continental shelf and its relationship to SST and bathymetry

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 847–855, doi:10.1029/2012JC008354.Interaction of warm, Atlantic-origin water (AW) and colder, polar origin water (PW) advecting southward in the East Greenland Current (EGC) influences the heat content of water entering Greenland's outlet glacial fjords. Here we use depth and temperature data derived from deep-diving seals to map out water mass variability across the continental shelf and to augment existing bathymetric products. We compare depths derived from the seal dives with the IBCAO Version 3 bathymetric database over the shelf and find differences up to 300 m near several large submarine canyons. In the vertical temperature structure, we find two dominant modes: a cold mode, with the typical AW/PW layering observed in the EGC, and a warm mode, where AW is present throughout the water column. The prevalence of these modes varies seasonally and spatially across the continental shelf, implying distinct AW pathways. In addition, we find that satellite sea surface temperatures (SST) correlate significantly with temperatures in the upper 50 m (R = 0.54), but this correlation decreases with depth (R = 0.22 at 200 m), and becomes insignificant below 250 m. Thus, care must be taken in using SST as a proxy for heat content, as AW mainly resides in these deeper layers.Funding for this work came from National Science Foundation OPP grant 0909373 and OCE grant 1130008, plus the WHOI Arctic Research Initiative. The Greenland Institute of Natural Resources and the Department of Fisheries and Oceans, Canada, supported the seal tagging logistics.2013-08-2

    Quantitative fatty acid signature analysis reveals a high level of dietary specialization in killer whales across the North Atlantic

    Get PDF
    Quantifying the diet composition of apex marine predators such as killer whales (Orcinus orca) is critical to assessing their food web impacts. Yet, with few exceptions, the feeding ecology of these apex predators remains poorly understood. Here, we use our newly validated quantitative fatty acid signature analysis (QFASA) approach on nearly 200 killer whales and over 900 potential prey to model their diets across the 5000 km span of the North Atlantic. Diet estimates show that killer whales mainly consume other whales in the western North Atlantic (Canadian Arctic, Eastern Canada), seals in the mid-North Atlantic (Greenland), and fish in the eastern North Atlantic (Iceland, Faroe Islands, Norway). Nonetheless, diet estimates also varied widely among individuals within most regions. This level of inter-individual feeding variation should be considered for future ecological studies focusing on killer whales in the North Atlantic and other oceans. These estimates reveal remarkable population- and individual-level variation in the trophic ecology of these killer whales, which can help to assess how their predation impacts community and ecosystem dynamics in changing North Atlantic marine ecosystems. This new approach provides researchers with an invaluable tool to study the feeding ecology of oceanic top predators

    Abundance and species diversity hotspots of tracked marine predators across the North American Arctic

    Get PDF
    Aim: Climate change is altering marine ecosystems worldwide and is most pronounced in the Arctic. Economic development is increasing leading to more disturbances and pressures on Arctic wildlife. Identifying areas that support higher levels of predator abundance and biodiversity is important for the implementation of targeted conservation measures across the Arctic. Location: Primarily Canadian Arctic marine waters but also parts of the United States, Greenland and Russia. Methods: We compiled the largest data set of existing telemetry data for marine predators in the North American Arctic consisting of 1,283 individuals from 21 species. Data were arranged into four species groups: (a) cetaceans and pinnipeds, (b) polar bears Ursus maritimus (c) seabirds, and (d) fishes to address the following objectives: (a) to identify abundance hotspots for each species group in the summer–autumn and winter–spring; (b) to identify species diversity hotspots across all species groups and extent of overlap with exclusive economic zones; and (c) to perform a gap analysis that assesses amount of overlap between species diversity hotspots with existing protected areas. Results: Abundance and species diversity hotpots during summer–autumn and winter–spring were identified in Baffin Bay, Davis Strait, Hudson Bay, Hudson Strait, Amundsen Gulf, and the Beaufort, Chukchi and Bering seas both within and across species groups. Abundance and species diversity hotpots occurred within the continental slope in summer–autumn and offshore in areas of moving pack ice in winter–spring. Gap analysis revealed that the current level of conservation protection that overlaps species diversity hotspots is low covering only 5% (77,498 km 2 ) in summer–autumn and 7% (83,202 km 2 ) in winter–spring. Main conclusions: We identified several areas of potential importance for Arctic marine predators that could provide policymakers with a starting point for conservation measures given the multitude of threats facing the Arctic. These results are relevant to multilevel and multinational governance to protect this vulnerable ecosystem in our rapidly changing world

    Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland

    Get PDF
    Author Posting. © The Authors, 2009. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 3 (2010): 182-186, doi:10.1038/ngeo764.The recent rapid increase in mass loss from the Greenland Ice Sheet is primarily attributed to an acceleration of outlet glaciers. One possible cause is increased melting at the ice/ocean interface driven by the synchronous warming of subtropical waters offshore of Greenland. This hypothesis is largely untested, however, because of the lack of observations from Greenland’s glacial fjords and our limited understanding of their dynamics. Here, we present new ship-based and moored oceanographic data, collected in Sermilik Fjord, a large glacial fjord in East Greenland, showing that subtropical waters are present throughout the fjord and are continuously replenished via a wind-driven exchange with the shelf, where they occur year-round. The temperature and rapid renewal of these waters suggest that, at present, they drive enhanced submarine melting at the terminus. Key controls on the melting rate are the volume and properties of subtropical waters on the shelf and the patterns of the along-shore winds, suggesting the glaciers’ acceleration was triggered by a combination of atmospheric and oceanic changes. These measurements provide evidence of rapid advective pathway for the transmission of oceanic variability to the ice-sheet margins and highlight an important process that is missing from prognostic ice-sheet models.F.S. acknowledges support from WHOI’s Ocean and Climate Change Institute’s Arctic Research Initiative and from NSF OCE 0751896, and G.S.H and L.A.S from NASA’s Cryospheric Sciences Program. Funding for the hooded seal deployments was obtained from the International Governance and Atlantic Seal Research Program, Fisheries and Oceans, Canada, to G. B. S. and to the Greenland Institute of Natural Resources to A. R. A

    Decline and Recovery of Atlantic Cod (Gadus morhua) Stocks throughout the North Atlantic

    Get PDF
    Many stocks of Atlantic cod (Gadus morhua) on both sides of the North Atlantic are currently at much reduced levels of biomass, but this situation is not in all instances the result of long, continuous decline. Most Northwest Atlantic stocks declined to low levels during the 1970s, but increased during the 1980s before declining even more severely during the late 1980s and early 1990s. Several of these stocks have shown little recovery despite severe restrictions on directed fishing. Many stocks in the Northeast Atlantic have experienced sustained increases and sustained decreases, but generally not in concert. Among-stock comparisons illustrate that fishing has played a dominant role in the dynamics of all cod stocks, but variability in climate has contributed to variability in recruitment, individual growth, and natural mortality. A cooling event during the last three decades of the twentieth century contributed to the rapid decline of several stocks in the Northwest Atlantic, and changes in life-history traits (growth rate, age and size at maturity) and in the biotic environment (predators and prey) may be contributing to recovery being slow

    Varying Diet Composition Causes Striking Differences in Legacy and Emerging Contaminant Concentrations in Killer Whales across the North Atlantic

    No full text
    Lipophilic persistent organic pollutants (POPs) tend to biomagnify in food chains, resulting in higher concentrations in species such as killer whales (Orcinus orca) feeding on marine mammals compared to those consuming fish. Advancements in dietary studies include the use of quantitative fatty acid signature analysis (QFASA) and differentiation of feeding habits within and between populations of North Atlantic (NA) killer whales. This comprehensive study assessed the concentrations of legacy and emerging POPs in 162 killer whales from across the NA. We report significantly higher mean levels of polychlorinated biphenyls (PCBs), organochlorine pesticides, and flame retardants in Western NA killer whales compared to those of Eastern NA conspecifics. Mean ∑PCBs ranged from ∼100 mg/kg lipid weight (lw) in the Western NA (Canadian Arctic, Eastern Canada) to ∼50 mg/kg lw in the mid-NA (Greenland, Iceland) to ∼10 mg/kg lw in the Eastern NA (Norway, Faroe Islands). The observed variations in contaminant levels were strongly correlated with diet composition across locations (inferred from QFASA), emphasizing that diet and not environmental variation in contaminant concentrations among locations is crucial in assessing contaminant-associated health risks in killer whales. These findings highlight the urgency for implementing enhanced measures to safely dispose of POP-contaminated waste, prevent further environmental contamination, and mitigate the release of newer and potentially harmful contaminants

    Investigating annual diving behaviour by Hooded seals (Cystophora cristata) within the Northwest Atlantic Ocean

    Get PDF
    This work was funded through the Atlantic Seal Research Programme, International Governance Programme (DFO), the Greenland Institute of Natural Resources, and a CFI grant to YFW. The authors also acknowledge the support of the Marine Alliance for Science and Technology for Scotland (MASTS) pooling initiative in the completion of this study. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.With the exception of relatively brief periods when they reproduce and moult, hooded seals, Cystophora cristata, spend most of the year in the open ocean where they undergo feeding migrations to either recover or prepare for the next fasting period. Valuable insights into habitat use and diving behaviour during these periods have been obtained by attaching Satellite Relay Data Loggers (SRDLs) to 51 Northwest (NW) Atlantic hooded seals (33 females and 18 males) during ice-bound fasting periods (2004−2008). Using General Additive Models (GAMs) we describe habitat use in terms of First Passage Time (FPT) and analyse how bathymetry, seasonality and FPT influence the hooded seals’ diving behaviour described by maximum dive depth, dive duration and surface duration. Adult NW Atlantic hooded seals exhibit a change in diving activity in areas where they spend >20 h by increasing maximum dive depth, dive duration and surface duration, indicating a restricted search behaviour. We found that male and female hooded seals are spatially segregated and that diving behaviour varies between sexes in relation to habitat properties and seasonality. Migration periods are described by increased dive duration for both sexes with a peak in May, October and January. Males demonstrated an increase in dive depth and dive duration towards May (post-breeding/pre-moult) and August–October (post-moult/pre-breeding) but did not show any pronounced increase in surface duration. Females dived deepest and had the highest surface duration between December and January (post-moult/pre-breeding). Our results suggest that the smaller females may have a greater need to recover from dives than that of the larger males. Horizontal segregation could have evolved as a result of a resource partitioning strategy to avoid sexual competition or that the energy requirements of males and females are different due to different energy expenditure during fasting periods.Publisher PDFPeer reviewe

    Prevalence of antibodies against Brucella spp. in West Greenland polar bears (Ursus maritimus) and East Greenland muskoxen (Ovibos moschatus)

    No full text
    Zoonotic infections transmitted from terrestrial and marine mammals to humans in European Arctic are of unknown significance, despite considerable potential for transmission due to local hunt and a rapidly changing environment. As an example, infection with Brucella bacteria may have significant impact on human health due to consumption of raw meat or otherwise contact with tissues and fluids of infected game species such as muskoxen and polar bears. Here, we present serological results for Baffin Bay polar bears (Ursus maritimus) (n = 96) and North East Greenland muskoxen (Ovibos moschatus) (n = 32) for antibodies against Brucella spp. The analysis was a two-step trial initially using the Rose Bengal Test (RBT), followed by confirmative competitive enzyme-linked immunosorbent assays of RBT-positive samples. No muskoxen had antibodies against Brucella spp., while antibodies were detected in six polar bears (6.25%) rendering a seroprevalence in line with previous findings in other Arctic regions. Seropositivity was not related to sex, age or biometrics i.e. size and body condition. Whether Brucella spp. antibodies found in polar bears were due to either prey spill over or true recurrent Brucella spp. infections is unknown. Our results therefore highlight the importance of further research into the zoonotic aspects of Brucella spp. infections, and the impact on wildlife and human health in the Arctic region
    corecore