2,240 research outputs found

    How do the blind ‘see’? The role of spontaneous brain activity in self-generated perception

    Get PDF
    Spontaneous activity of the human brain has been well documented, but little is known about the functional role of this ubiquitous neural phenomenon. It has previously been hypothesized that spontaneous brain activity underlies unprompted (internally generated) behaviour. We tested whether spontaneous brain activity might underlie internally-generated vision by studying the cortical visual system of five blind/visually-impaired individuals who experience vivid visual hallucinations (Charles Bonnet syndrome). Neural populations in the visual system of these individuals are deprived of external input, which may lead to their hyper-sensitization to spontaneous activity fluctuations. To test whether these spontaneous fluctuations can subserve visual hallucinations, the functional MRI brain activity of participants with Charles Bonnet syndrome obtained while they reported their hallucinations (spontaneous internally-generated vision) was compared to the: (i) brain activity evoked by veridical vision (externally-triggered vision) in sighted controls who were presented with a visual simulation of the hallucinatory streams; and (ii) brain activity of non-hallucinating blind controls during visual imagery (cued internally-generated vision). All conditions showed activity spanning large portions of the visual system. However, only the hallucination condition in the Charles Bonnet syndrome participants demonstrated unique temporal dynamics, characterized by a slow build-up of neural activity prior to the reported onset of hallucinations. This build-up was most pronounced in early visual cortex and then decayed along the visual hierarchy. These results suggest that, in the absence of external visual input, a build-up of spontaneous fluctuations in early visual cortex may activate the visual hierarchy, thereby triggering the experience of vision

    Insourcing Health Care Innovation

    Get PDF
    Many health care professionals find it irritating when management gurus recommend solving health care\u27s problems with approaches they would “copy and paste” from unrelated industries — a former chief executive of a manufacturing company claims that the same simple lessons that enabled him to transform his own industry can improve value in health care, or a business-school professor offers an eight-point leadership plan that she\u27s translated into health care as easily as if she\u27d translated it into French. Many people who work in health care value outside perspectives and are open to new approaches — and yet bristle at facile recommendations emerging from these translations

    Day-Ahead Scheduling of Electric Vehicles and Electrical Storage Systems in Smart Homes Using a Novel Decision Vector and AHP Method

    Get PDF
    The two-way communication of electricity and information in smart homes facilitates the optimal management of devices with the ability to charge and discharge, such as electric vehicles and electrical storage systems. These devices can be scheduled considering domestic renewable energy units, the energy consumption of householders, the electricity tariff of the grid, and other predetermined parameters in order to improve their efficiency and also the technical and economic indices of the smart home. In this paper, a novel framework based on decision vectors and the analytical hierarchy process method is investigated to find the optimal operation schedule of these devices for the day-ahead performance of smart homes. The initial data of the electric vehicle and the electrical storage system are modeled stochastically. The aim of this work is to minimize the electricity cost and the peak demand of the smart home by optimal operation of the electric vehicle and the electrical storage system. Firstly, the different decision vectors for charging and discharging these devices are introduced based on the market price, the produce power of the domestic photovoltaic panel, and the electricity demand of the smart home. Secondly, the analytical hierarchy process method is utilized to implement the various priorities of decision criteria and calculate the ultimate decision vectors. Finally, the operation schedule of the electric vehicle and the electrical storage system is selected based on the ultimate decision vectors considering the operational constraints of these devices and the constraints of charging and discharging priorities. The proposed method is applied to a sample smart home considering different priorities of decision criteria. Numerical results present that although the combination of decision criteria with a high rank of electricity demand has the highest improvement of technical and economic indices of the smart home by about 12 and 26%, the proposed method has appropriate performance in all scenarios for selecting the optimal operation schedule of the electric vehicles and the electrical storage system

    Between images and built form: Automating the recognition of standardised building components using deep learning

    Get PDF
    Building on the richness of recent contributions in the field, this paper presents a state-of-the-art CNN analysis method for automatingthe recognition of standardised building components in modern heritage buildings. At the turn of the twentieth century manufacturedbuilding components became widely advertised for specification by architects. Consequently, a form of standardisation across varioustypologies began to take place. During this era of rapid economic and industrialised growth, many forms of public building wereerected. This paper seeks to demonstrate a method for informing the recognition of such elements using deep learning to recognise'families' of elements across a range of buildings in order to retrieve and recognise their technical specifications from the contemporarytrade literature. The method is illustrated through the case of Carnegie Public Libraries in the UK, which provides a unique butubiquitous platform from which to explore the potential for the automated recognition of manufactured standard architecturalcomponents. The aim of enhancing this knowledge base is to use the degree to which these were standardised originally as a means toinform and so support their ongoing care but also that of many other contemporary buildings. Although these libraries are numerous,they are maintained at a local level and as such, their shared challenges for maintenance remain unknown to one another. Additionally,this paper presents a methodology to indirectly retrieve useful indicators and semantics, relating to emerging HBIM families, byapplying deep learning to a varied range of architectural imagery

    Frequency of neurolopsychological deficits after traumatic brain injury

    Get PDF
    El traumatismo craneoencefálico (TCE) puede conllevar impactantes cambios en la vida cotidiana, que incluyen alteraciones a nivel social, profesional, comunicativo y cognitivo (dificultades atencionales, mnemónicas y ejecutivas). Este estudio tuvo por objeto caracterizar la ocurrencia de déficits neuropsicológicos post-TCE y constatar el impacto ocasionado por el nivel de severidad del trauma en el desempeño cognitivo de los pacientes. Participaron 96 adultos en la muestra total, que fue dividida en dos grupos para evaluar el nivel de severidad del trauma: TCE leve (n=39) y TCE grave (n=77). La gravedad de la lesión se clasificó por medio de la Escala de Coma de Glasgow, por la duración de la pérdida de consciencia, o por la amnesia post-traumática. No había diferencias entre la edad y la escolaridad de los participantes. Para la comparación entre los grupos en cuanto a la distribución de ocurrencia de déficits neuropsicológicos, se utilizó el Chi-cuadrado. Se utilizó una batería de evaluación neuropsicológica flexible conformada por tareas verbales y visoespaciales de habilidades lingüísticas, mnemónicas y ejecutivas. Los grupos no se diferenciaron en cuanto a las variables sociodemográficas. Los pacientes con TCE leve tuvieron mejores puntajes comparados con los de TCE grave (número de errores y categorías completadas del Test de clasificación de tarjetas de Wisconsin- [WCST, por sus siglas en inglés]; errores en la parte B del Test de Hayling; y en la interferencia retro y proactiva del Test de aprendizaje auditivo verbal de Rey [RAVLT, por sus siglas en inglés]. El nivel de severidad del trauma parece mostrar diferencias en los individuos en cuanto al desempeño en memoria episódica de información nueva y en el control de interferencia entre los recuerdos; lo mismo se aplica a las funciones de flexibilidad e inhibición. Estos resultados sugieren que es necesaria una mayor inversión en acciones de políticas públicas, priorizando intervenciones neurocognitivas reeducativas y métodos de prevención de accidentes relacionados con lesiones traumáticas que tengan alta incidencia de secuelas.El traumatismo craneoencefálico (TCE) puede conllevar impactantes cambios en la vida cotidiana, que incluyen alteraciones a nivel social, profesional, comunicativo y cognitivo (dificultades atencionales, mnemónicas y ejecutivas). Este estudio tuvo por objeto caracterizar la ocurrencia de déficits neuropsicológicos post-TCE y constatar el impacto ocasionado por el nivel de severidad del trauma en el desempeño cognitivo de los pacientes. Participaron 96 adultos en la muestra total, que fue dividida en dos grupos para evaluar el nivel de severidad del trauma: TCE leve (n=39) y TCE grave (n=77). La gravedad de la lesión se clasificó por medio de la Escala de Coma de Glasgow, por la duración de la pérdida de consciencia, o por la amnesia post-traumática. No había diferencias entre la edad y la escolaridad de los participantes. Para la comparación entre los grupos en cuanto a la distribución de ocurrencia de déficits neuropsicológicos, se utilizó el Chi-cuadrado. Se utilizó una batería de evaluación neuropsicológica flexible conformada por tareas verbales y visoespaciales de habilidades lingüísticas, mnemónicas y ejecutivas. Los grupos no se diferenciaron en cuanto a las variables sociodemográficas. Los pacientes con TCE leve tuvieron mejores puntajes comparados con los de TCE grave (número de errores y categorías completadas del Test de clasificación de tarjetas de Wisconsin- [WCST, por sus siglas en inglés]; errores en la parte B del Test de Hayling; y en la interferencia retro y proactiva del Test de aprendizaje auditivo verbal de Rey [RAVLT, por sus siglas en inglés]. El nivel de severidad del trauma parece mostrar diferencias en los individuos en cuanto al desempeño en memoria episódica de información nueva y en el control de interferencia entre los recuerdos; lo mismo se aplica a las funciones de flexibilidad e inhibición. Estos resultados sugieren que es necesaria una mayor inversión en acciones de políticas públicas, priorizando intervenciones neurocognitivas reeducativas y métodos de prevención de accidentes relacionados con lesiones traumáticas que tengan alta incidencia de secuelas.Traumatic brain injury (TBI) can lead to significant changes in daily life, as well as in social, labor, communicative, and cognitive domains (attention, memory and executive functions). This study aimed to characterize the occurrence of post-TBI neuropsychological deficits as well as to determine whether there is an impact related to the level of severity of the trauma on the patient's performance. Ninety-six adults participated in the study, who were divided in two groups to assess the trauma's level of severity: mild TBI (n=39) and severe TBI (n=57). This severity was classified by the Glasgow Coma Scale, by the duration of consciousness loss, or by post-traumatic amnesia. There were no differences between the groups regarding variables of age and years of schooling. A Chi- square test was used to do a comparison between the two groups in terms of occurrence of neuropsychological deficits. Verbal, visuospatial, mnemonic, linguistic and executive tests composed a flexible neuropsychological battery. Patients with mild TBI had better scores compared to those with severe TBI (number of errors and in completed categories of the Modified Wisconsin Card Sorting Test (MWCST); errors in Part B of The Hayling Test; and proactive and retroactive interference in the Rey Auditory Verbal Learning Test (RAVLT). The severity of the trauma seems to differentiate individual's performance on episodic memory of new information and in the control of interference between memories; the same is applied to flexibility and inhibition functions. These results suggest the need for more investments in public health policy actions, prioritizing neurocognitive remedial intervention and prevention methods for such condition with high incidence of sequelae

    Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke.

    Get PDF
    Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation

    A Fuzzy Inference System for Closed-Loop Deep Brain Stimulation in Parkinson’s Disease

    Get PDF
    Parkinsons disease is a complex neurodegenerative disorder for which patients present many symptoms, tremor being the main one. In advanced stages of the disease, Deep Brain Stimulation is a generalized therapy which can significantly improve the motor symptoms. However despite its beneficial effects on treating the symptomatology, the technique can be improved. One of its main limitations is that the parameters are fixed, and the stimulation is provided uninterruptedly, not taking into account any fluctuation in the patients state. A closed-loop system which provides stimulation by demand would adjust the stimulation to the variations in the state of the patient, stimulating only when it is necessary. It would not only perform a more intelligent stimulation, capable of adapting to the changes in real time, but also extending the devices battery life, thereby avoiding surgical interventions. In this work we design a tool that learns to recognize the principal symptom of Parkinsons disease and particularly the tremor. The goal of the designed system is to detect the moments the patient is suffering from a tremor episode and consequently to decide whether stimulation is needed or not. For that, local field potentials were recorded in the subthalamic nucleus of ten Parkinsonian patients, who were diagnosed with tremor-dominant Parkinsons disease and who underwent surgery for the implantation of a neurostimulator. Electromyographic activity in the forearm was simultaneously recorded, and the relation between both signals was evaluated using two different synchronization measures. The results of evaluating the synchronization indexes on each moment represent the inputs to the designed system. Finally, a fuzzy inference system was applied with the goal of identifying tremor episodes. Results are favourable, reaching accuracies of higher 98.7 % in 70 % of the patients.Centro de Investigación Biomédica en RedDepto. de Psicología Experimental, Procesos Cognitivos y LogopediaDepto. de Radiología, Rehabilitación y FisioterapiaFac. de PsicologíaFac. de MedicinaTRUEpu

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    Effect of fluoride toothpastes on enamel demineralization

    Get PDF
    BACKGROUND: It was the aim of this study to investigate the effect of four different toothpastes with differing fluoride compounds on enamel remineralization. METHODS: A 3 × 3 mm window on the enamel surface of 90 human premolars was demineralized in a hydroxyethylcellulose solution at pH 4.8. The teeth were divided into 6 groups and the lower half of the window was covered with varnish serving as control. The teeth were immersed in a toothpaste slurry containing: placebo tooth paste (group 1); remineralization solution (group 2); Elmex Anticaries (group 3); Elmex Sensitive (group 4); Blend-a-med Complete (group 5) and Colgate GRF (group 6). Ten teeth of each group were used for the determination of the F(- )content in the superficial enamel layer and acid solubility of enamel expressed in soluble phosphorus. Of 6 teeth of each group serial sections were cut and investigated with polarization light microscopy (PLM) and quantitative energy dispersive X-ray analysis (EDX). RESULTS: The PLM results showed an increased remineralization of the lesion body in the Elmex Anticaries, Elmex Sensitive and Colgate GRF group but not in the Blend-a-med group. A statistically significant higher Ca content was found in the Elmex Anticaries group. The fluoride content in the superficial enamel layer was significantly increased in both Elmex groups and the Blend-a-med group. Phosphorus solubility was significantly decreased in both Elmex groups and the Blend-a-med group. CONCLUSION: It can be concluded that amine fluoride compounds in toothpastes result in a clearly marked remineralization of caries like enamel lesions followed by sodium fluoride and sodium monofluorophosphate formulations
    corecore