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Abstract Parkinson is a neurodegenerative disease whose principal symptoma-
tology includes several symptoms. The treatment entails oral medication or deep
brain stimulation. The former decreases its beneficial effects while increases the
adverse effects with the time of use. On the other hand, deep brain stimulation de-
pends on a device implanted into the brain that performs a continuous stimulation
on the damaged area and whose battery needs to be replaced after few years.

Local field potentials were recorded in the subthalamic nucleus of 10 Parkin-
sonian patients, who were diagnosed with tremor-dominant PD and underwent
surgery for the implantation of a neurostimulator.

In this work we design a tool that learns to recognize the principal symptom of
this disease, tremor. The goal of the designed system is to be able to detect when
the patient is suffering a tremor episode. A demand driven stimulation would
perform a more intelligent use of the device, stimulating only when it is necessary.

Measured LFP signals were preprocessed by means of down sampling, filtering,
normalization, rectification and windowing. Then, two synchronization measures
are implemented and evaluated on our dataset. These measures inform us about
the synchronization level between the subthalamic and the muscular activity. The
results of evaluating the indexes on each windows represent the inputs to the
designed system. Finally, a fuzzy inference system is applied for tremor detection.
Results are favourable, reaching accuracies higher than 98.7% in the 70% of the
patients.
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1 Introduction

Nowadays, technology is all around us. We use it for a multitude of purposes, such
as to communicate from different locations, to access the network and get any
information we desire in just seconds by clicking a mouse, predict the weather and
make plans accordingly, live in domestic houses that learn from our preferences.
More recently it is being used to study the development of Smart Cities or Intel-
ligent Transportation Systems. All these examples of technology are aimed at the
same goals, to put technology at the service of people to make our lives easier and
more enjoyable.

However, this high technological development arrives to the market before
health system applications. It often seems paradoxical that it is possible to fix
a malfunction in our computers, but not in ourselves, for example our brains. It is
however true that the domain is much more complex. It is also true that we are not
the designers of the brain and we do not by any means understand completely the
way on which it works, so that repairing a malfunction is not trivial. However, this
gap in the application of technology sometimes seems, in many cases, senseless.

We experience tragic diseases, that in a very short time completely disrupt our
health and, as a direct consequence, our lifestyle. Such is the case with neurode-
generative diseases. Our capabilities are lessened drastically and often rapidly and
to be aware of it makes us feel helpless. If technology exists – or can be developed
– that, when integrated in our body, can improve the performance of damaged
biological circuits, then it should be so employed. The goal is to put technology
at the service of our physiological and neurological needs, so that it can repair us
when needed. But, how can technology be enabled to achieve that goal when we
do not know the reason of some diseases? A possible solution is the use of learn-
ing through examples. By employing machine learning techniques we can design
a machine to learn what it is normal and what is pathological, and then ask the
system to take decisions.

This study focuses on Parkinson’s Disease (PD). In this work we design a tool
that learns to recognize the principal symptom of this disease, tremor. The goal
of the designed system is to be able to recognize when the patient is suffering a
tremor episode. The working environment is a computer, but the idea of demand
driven stimulation is embedded in the system in a real neurostimulator [18,1].
Thus, an intelligent systems that learns from the patient pathology, can improve
the treatment provided, and therefore the patients daily life.

1.1 Parkinson’s Disease

Motor function is a balance carefully regulated by a number of neurotransmitters
in the basal ganglia circuits. When one of the neurotransmitters involved is not
released correctly the information between brain cores is inefficient and derivates
in diseases of the motor system. In the case of Parkinson’s Disease, the main cause
is the death of dopamine-secreting neurons. While the reasons for this death are
unknown, the effects that this provokes are well known. The principal symptoma-
tology includes tremor, rigidity and bradykinesia [7,16]. The best known of these
is the tremor and it is this aspect that is studied in this paper. There are different
types of tremor in Parkinson’s disease depending on the circumstances in which it



A Fuzzy Inference System for Resting Tremor Detection in Parkinson’s Disease 3

appears. The most common is the so-called resting tremor (RT). RT is a rhythmic
movement, which appears in a relaxed and supported limb, disappearing or de-
creasing when the patient begins a voluntary movement. It occurs at a frequency
between 3 and 5 Hz and is very debilitating for the patient.

The treatment of Parkinson’s disease is not an easy task. The first choice is
an oral treatment, consisting on the provision of levodopa, a precursor of the
dopamine. The use of this treatment began to be used at the mid-sixties and it
continues being the most used one. It relieves the main symptomatology of PD.
However this is not a treatment that adjusts to the evolution of the disease. After a
few years of use (around 5 years), the patients typically begin to experience motor
fluctuations. This is the so-called ON-OFF effect, wherein episodes in which the
medication works (ON), are alternated with periods in which does not (OFF).
Furthermore OFF periods increase in duration as the usage time of the treatment
increases, thus as time passes so oral medication becomes more inadequate [12,
11].

Furthermore, prolonged use of levodopa can induce dyskinesia (LID), which
causes the patient to suffer different types of involuntary movements. Most cases
of LID appear when the anti-Parkinson effects of levodopa are at a maximum. It
is considered that this is due to an imbalance in the levels of neurotransmitter
that are affected by the administration of the medication. This means that setting
the best dose for an individual’s treatment is a difficult task. Due to these com-
plications many patients have undergone surgery to be treated with Deep Brain
Stimulation (DBS). This therapy consists of electrical stimulation applied to spe-
cific areas within the brain, most frequently the subthalamic nucleus. This breaks
the abnormal activity and imposes a normal brain rhythm [14].

Although neurostimulators are called brain-pacemakers, these implants do not
work in the same way. Once the device is implanted and running, it stimulates
uninterruptedly. As a result DBS requires that the battery must be changed in a
maximum time of 9 years [8].

In this work we propose a real-time resting tremor detection system, which
could be a first step towards demand driven stimulation, thereby providing more
intelligent healthcare. The rest of the paper is organized as follows. In Section 2, the
pre-processing techniques are explained and then we introduce the synchronization
measures used in our experimentation. The fuzzy-system is presented in Section
3 and each of its components is explained. Section 4 shows the global results and
the results per patient. Finally, In Section 5 we draw some conclusions.

2 Materials and Methods

The dataset used in this study is composed of files from ten patients who were
diagnosed with tremor-dominant PD, and who all underwent surgery for the im-
plantation of a neurostimulator (DBS treatment) at the John Radcliffe Hospital
in Oxford, UK. The local research ethics committee of the Oxfordshire Health
Authority approved the recordings and informed consent was obtained from each
patient.

Recordings were performed during a postoperative observation period in which
the depth electrodes were already implanted but not stimulating. As a result data
was accessible for recording.
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Each record consists of two channels, recorded simultaneously. The first one
is the Local Field Potential (LFP), collected through the electrodes in the basal
ganglia, specifically in the subthalamic area.

The second channel is the associated electromyography (EMG) signal indicting
movement (tremor) time sequenced to synchronize with the LFP recording. The
EMG records were taken from the extensor in the arm contralateral to the LFP
implantation.

2.1 Data Preprocessing

Before dealing with the data it was necessary to carry out a series of preprocessing
techniques to eliminate noise, filter the bands and highlight events of interest. In
this section the techniques used and the reasons for their need is presented.

2.1.1 Normalization

The files of our dataset vary in amplitude between patients. This is due to the
idiosyncrasies of the signal and the symptomatology of the disease.

It is therefore necessary to perform normalization of the data, such that the
posterior processing and obtained results are comparable among different patients.

Therefore we normalized all channels separately, so that all of them maintain
their oscillatory properties but the mean and the variance were normalized to 0
and 1, respectively.

2.1.2 Resampling

The sampling rate varies between 250-1000 Hz throughout our patient dataset. A
re-sampling is realized in order to make the posterior processing the same for all
the data and so that the results are comparable. We resampled all the files to 250
Hz, which was the minimum sampling frequency present in all the files.

2.1.3 Filtering

Due to the different characteristics and nature of the LFP and EMG signals, the
filtering pipeline was also different.

For LFP we performed a band-pass filtering between 2 and 45 Hz with a 500
order FIR filter designed using a hamming window. LFP signals contain movement
artefacts around 1 Hz, so we set the low cut-off frequency at 2 Hz. On the other
hand, by fixing the upper cut-off frequency at 45 Hz we excluded the line noise
(in Europe 50 Hz) as well.

The EMG signal was filtered in two steps. In a first stage we applied a band-
pass order 500 FIR filter between 30 and 125 Hz. This frequency band was selected
due to the nature of the EMG signal, consisting in burst starting at 30 Hz. The
upper edge of the filter is the maximum allowed frequency of the signal, due to
the Nyquist theorem. This signal was then rectified to obtain a baseband signal
describing the muscular activity.

Rectification is a nonlinear processing that modifies the signal spectrum. When
dealing with EMG this method intensifies the signal power at low frequencies
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[19].We calculated the Hilbert transform of the filtered EMG signal and con-
structed the analytic signal, A(x), which can be expressed as:

A(x) = x+ iH(x)

where x is the original signal, H(x) is the Hilbert transform of x and i is
the imaginary unit. From this analytic signal we calculated the envelope, which
represent the instanteneous oscillatory energy of the EMG signal. This envelope
is often used as an indicator of muscular activity.[10]

Finally, this envelope was filtered with the same filter applied to LFP in order
to be able to compare both signals.

2.1.4 Windowing

Tremor episodes experienced by patients in our dataset are not isolated in files
of one nature. Therefore in our dataset there are files that contain both tremor
and rest episodes due to the patient experiencing both states during the recording
period.

We split the data obtained into 2 seconds contiguous windows without overlap-
ping. The window size is based on achieving a trade-off between temporal resolu-
tion and the number of available samples. The use of 2 seconds windows provides
an adequate temporal resolution (with a frequency step of 1/2 Hz), whilst count-
ing on a significant number of windows an average of 42 per patient. The signal
sampling frequency was set to 250 Hz, so each 2 seconds window contained 500
samples.

2.2 Synchronization measures as features

To understand more how the brain works, it is useful to observe it working nat-
urally. We can do that by means of several techniques based on imaging (such
as functional magnetic resonance imaging or positron emitting tomography) or
based on the electrical or magnetic signals generated in the brain (such as Elec-
troencephalography or Magnetoencephalography). In our case we count with two
simultaneous signals: local field potentials and electromyography.

LFP measures the aggregate presynaptic and postsynaptic activity of a pop-
ulation of neurons, meanwhile EMG measures the electrical activity realized due
to skeletal muscle contraction.

The analysis of synchronized activity is a new observation window on the func-
tioning of the brain. Analyzing the level of coupling between signals can determine
which brain areas share information among them. It is therefore very useful to re-
veal the covariance between areas or as in this work, between a brain area and the
effects which its activity provokes.

The EMG signal is more reliable regarding tremor detection as opposed than
raw LFP signal, since the first one measures directly the muscular activity, which
is higher under tremor episodes. Moreover, some indexes reflect an increase of
synchronization levels under tremor episodes, in comparison with rest states. We
consider here two synchronization measures as inputs to a fuzzy controller, mutual
information and bicoherence.
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The selection of the indexes was based on performance. We tested several
synchronization indexes, including correlation, coherence [15] and phase locking
value [6]. The selected ones are those which better distinguish between the tremor
and resting states.

2.2.1 Mutual Information

Mutual information is an index that defined the amount of information shared
by two variables, defining information in the information theory framework. The
entropy of a random variable is defined in this framework as the amount of in-
formation it holds. It can be defined also as the measure of its uncertainty. The
higher the uncertainty, the larger is the entropy.

Given a random signal X, which has a probability distribution p(x) = P{X =
x}, x ∈ X, entropy is defined as:

H(x) = −
∑
x∈X

p(x) log p(x) (1)

If now we have a pair of random variables, we defined the mutual information
between then as:

MI =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2)

Where p(x, y) is the joint probability. If MI(X,Y) = 0, then the variables are
independent, they do not share any information. Else if MI(X,Y) > 0, exists an
association between X and Y, that is, the knowledge of one variable, would give
us some knowledge about the other one [13].

2.2.2 Bicoherence

Power spectrum analysis is usually performed via a Fourier Transform (FT), of
the second order statistic of the signal. But, unfortunately, this measure loses
information about the phase relationships between frequency components, a fact
that has been linked with impaired functions in the brain [17].

The bispectrum is a two dimensional version of the FT based on the third
order cumulant of the signal. It is defined as:

B(f1, f2) =
∞∑

m=−∞

∞∑
n=−∞

R(m,n)e−j2πf1me−j2πf2n (3)

Where R(m,n) is the third order cumulant as a function for the lags m and n

and f1 and f2 are the frequencies in study.
The bispectrum explores if the signals at f1, f2 and f1 + f2 are synchronized,

which would mean that the oscillation at f1 + f2 is due the nonlinear relation
between both signals. Bicoherence can be calculated as a normalized version of
the bispectrum [9].

BICOH(f1, f2) =
B(f1f2)√

P (f1)P (f2)P (f1 + f2)
(4)



A Fuzzy Inference System for Resting Tremor Detection in Parkinson’s Disease 7

where P (f) is the power spectrum at frequency f . For incoherent signals this
measure tends to zero.

3 Fuzzy System

Traditionally the field of predicate logic works by dividing the output space into
disjoint sets. Thus, any predicate P applied to a collection U, is associated to a
precise set denoted as P ⊂ U . This can be described through the membership func-
tion P whose value is determined by the belonging to P of the different elements
u ∈ U which is defined by:

µp(u) =

{
1 if u ∈ P
0 otherwise

(5)

So if µp(u) is 1, the predicate is true. Whereas if it is zero the predicate will
be false.

Designing systems employing classical logic has the problem that they are too
rigid. This rigidity is a limitaton in the sense that it is difficult to model systems
based on precise rules when the domain is not determined by precise inputs and/or
outputs.

Therefore classical logic turns out to be insufficient to solve some problems.
From this need, the definition of fuzzy sets and fuzzy logic has appeared. It builds
models that are particularly useful to work with uncertainty in a more natural
way.

A fuzzy predicate, evaluated on a collection U , is associated to a fuzzy set
V ⊂ U , which is defined by the function µv(u) This function determines the
membership function of the elements of V to U, as a matter of degree.

uv:U → [0, 1]

Thus, a fuzzy set is one in which the elements do not belong completely to
only one set, but do belong to that sets to a certain extent. As a result, to work
with fuzzy sets we define the degrees of membership of the different elements to
each set.

We have decided to use a fuzzy control system for detection of resting tremor
motivated by two main reasons which are:

– The impreciseness can be a source of uncertainty. EMG and LFP time series,
despite having been meticulously collected by the medical team, may have cer-
tain levels of impreciseness because of the noise. This may be due, for example,
to differences in skin impedance. As a result this could alter the values of elec-
tromyography. Fuzzy methods are able to manage the imprecision present in
the data.

– It allows for variability in the data. As a preliminary study, we have explored
how the different synchronization index works on each patient. Although gen-
erally the trend remains the same for all patients, there is not a threshold that
determines from which value of the index we can consider that the patient is
experiencing a tremor episode. So there is a short range of values on which the
output cannot be easily determined and these can be either a tremor or rest
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episode. We know that if the system output is in the range zero to 0.2, the
input was a resting episode. Similarly, if the output is greater than 0.4, the
input was almost surely a tremor episode. But, what happens when the output
is within the approximate interval [0.2-0.4]?

Taking into consideration both situations in the design of the detection sys-
tem,for the problem addressed in this work it can be beneficial when we attempt
to minimize the number of false negatives. A false negative would mean that our
system has detected an input as a resting episode, when in fact it is a tremor one.
In these situations the resultant controller would not provide stimulation to the
patient when it is actually needed. Because of that, we are aiming to diminish the
number of false negatives. Indeed this is the most critical situation.

False positives, on the other hand, are not so much of a problem. In such
instances an input would be detected as a tremor episode when in fact it was
actually a normal resting period. In this case the controller would provide un-
necessary stimulation. The negative of this is that useful power is being used up
by the device for no reason. In the limit, with lots of such cases, the controller
would tend to the present case of continual stimulation. But although this is not
a desirable situation it is not critical as current system works in this mode with
the patient not suffering any backside.

3.1 Defining the System

The specific components of a fuzzy controller are shown in figure 1. MI (mutual
information) and BICOH (bicoherence) are the inputs to the system. These inputs
are the results of evaluating the synchronization measures to each window of the
preprocessed raw data obtained as described in the previous section.

In Figure. 1 the central block represents the fuzzy system itself. It is composed
of three modules on the design of a Mamdani fuzzy inference system: Fuzzification,
Rule inference and Defuzzification [2].

– Fuzzification of the input variables. This step evaluates the conditions of the
rules and turns the inputs to membership degrees for each set.

– Rule Inference. This step comprises rule evaluation and the aggregation of the
generated outputs.

– Defuzzification. Finally it is necessary to carry out defuzzification. This process
transforms the aggregate fuzzy output set to a single number. Doing this we
translate the result obtained to one that has sense in our domain.

Based on the obtained output the system evaluates if the input corresponds or
not to a tremor episode. When the onset of a tremor episode is detected the neu-
rostimulator would give the order to stimulate. In fact, it is also possible to predict
such onset and hence apply stimulation to stop the tremor actually occurring in
the first place [4].

3.1.1 Fuzzification

This step evaluates the conditions of the rules and turns the inputs to membership
degrees for each set.
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Fig. 1 System operation scheme

Fig. 2 Membership for Mutual Information Input

The membership function defines the fuzzy sets. Its determination is a matter
of design and tends to be subjective. It must be designed with full knowledge of
the domain and the nature of the inputs which are provided to the fuzzy control
system. Therefore we have taken certain aspects into account: [5]

– The sets are sufficiently wide to allow noise in the measurement.
– A certain amount of overlap is desirable; otherwise the controller may run into

poorly defined states, where it does not return a well defined output.

The selection of the membership function for each set is based on knowledge
of the dataset. In that sense, we have chosen spline-based functions for the NO-
TREMOR input set, given by:

f(input) =


1 if input <= 1

1− 2( input−0.1
0.1−0.2 )2 if 0.1 <= input <= 0.1+0.2

2

1− 2( input−0.2
0.2−0.1 )2 if 0.1+0.2

2 <= input <= 0.2

0 if input >= 0.2

(6)

In the same way we define spline-based curves for the TREMOR input, given
by:

f(input) =


0 if input <= 0.05

2( input−0.05
0.2−0.05 )2 if 0.05 <= input <= 0.05+0.2

2

1− 2( input−0.2
0.2−0.1 )2 if 0.1+0.2

2 <= input <= 0.2

0 if input >= 0.2

(7)
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Fig. 3 Membership for Bicoherence Input

Fig. 4 Systems Output Membership

The output represents the state of the neurostimulator. Depending of the
tremor state of the patient, the stimulator can be either stimulating or kept wait-
ing, just listening (We denominate this state as stand-by henceforth). To model
this, we opted for trapezoidal-shaped membership functions, defined by:

f(output) =


0 if output <= 0
1 if 0 <= output <= 0.1
0.2−output
0.2−0.1 if 0.1 <= output <= 0.2

0 if 0.2 <= output

(8)

f(output) =


0 if output <= 0.05
output−0.05
0.2−0.05 if 0.05 <= output <= 0.2

1 if 0.2 <= output <= 1
1−output
1.01−1 if 1 <= output <= 1.01

0 if 1 <= output

(9)

3.1.2 Rule Evaluation

This step comprises rule evaluation and aggregation of the generated outputs.
Evaluation of the rules uses fuzzy operators, which are applied over the inputs to
calculate the trigger force of the rules. The result is a fuzzified value for each of
the rules.

Fuzzy Operators

Fuzzy logic is a superset of classical logic. Classical logic uses absolute opera-
tors to calculate the output of a given input, that is, only Boolean values for the
output are contemplated. Meanwhile fuzzy logic employs fuzzy operators which
contain the values 0 and 1 as extremes, but also takes into account all the inter-
mediate values, thereby allowing for uncertainty. We use the AND operator, which
in our case works with the minimum method.
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Rule Number MI BICOH DECISION
1 LOW LOW STAND-BY
2 HIGH LOW STIMULATE
3 LOW HIGH STIMULATE
4 HIGH HIGH STIMULATE

Table 1 Systems Rules

Definition of the rules

The rule set defines how the inputs are related to the outputs. Fuzzy rules
differ from classical rules in that the antecedent of a classical rule must be 100%
true in order that the consequent can be evaluated. However in fuzzy rules, the
antecedent can be partially true, which does not in itself enable or prevent the
trigger of the rule, simply that the consequent is partially true.

During the design stage, the definition process of the fuzzy rules usually re-
quires an adjustment process to optimize the performance of the system. The
defined rules are shown in Table 1, where each row represents a rule. As described
in previous section, the synchronization indexes can take the fuzzy value of low or
high. Meanwhile the overall/final output is either Stimulate or Standby.

Evaluation and Aggregation

Once rules have been evaluated we have one physical output for each rule. But
having different output sets does not provide any directly meaningful information,
thus it is necessary to perform an aggregation of the outputs. This step performs
a unification combining the membership functions of all the rule consequents. In
our case we have chosen the maximum method to perform the aggregation.

3.1.3 Defuzzification and Thresholding

Finally it is necessary to carry out a defuzzification. This process transform the
aggregated fuzzy output set to a single number. Doing this we turn the result
obtained into one that has sense in our domain. In this step we have opted for the
centroid method, which calculates the centre of area of the obtained fuzzy set.

The output of the system represents the degree of synchronization between LFP
and EMG. This value does not however itself determine the level of stimulation
from the device. Therefore, a thresholding module is added. This module compares
the output to a preset threshold, in this way:

device− decision =

{
stimulate if output >= threshold

stand− by otherwhise (10)

As will be seen in the next section, this threshold can be the same for all of
the patients involved or it can be adjusted individually. This last option can be
of interest as it can improve the tremor detection. It has been previously shown
that there appear to be different types of Parkinson’s Disease [3]. It may well be
therefore that the threshold is linked to the disease classification.
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Interval Number of
NT

Instances
(red dots)

Number of
T

Instances
(green
dots)

FP FN GLOBAL
ACCURACY

TREMOR
ACCURACY

NO-
TREMOR

ACCURACY

[0-0.2) 29 1
42 (12.2%) − 87.8%

88.2% 82%
[0.2-0.3) 78 6
[0.3-0.4) 195 35
[0.4-1] 66 314 − 66 (17.4%) 82.6%
[0-1] Global Accuracy 85.1%

Table 2 Global Results

4 Results

In this section we present the obtained results. By considering the range of the out-
puts, we can define four ranges: [0-0.2), [0.2-0.3), [0.3-0.4) and [0.4-1]. We evaluate
the number of false positives, false negatives, tremor accuracy, no-tremor accuracy
and global accuracy for each range.

A false positive occurs when the system determines that the input was a tremor
instance, whilst in really it was a no-tremor instance. Analogously, false negatives
are the cases in which the system considers the input corresponds with a no-tremor
episode but in fact the patient was trembling.

As previously mentioned, the final determination as to whether the system
provides stimulation or not, depends on whether the output is greater than a fixed
threshold or not. The operation of the indexes, although very similar, is not exactly
the same across the patients. Therefore, threshold determination is critical for the
accuracy of the system.

With this in mind, we studied here how the system works by determining
the threshold in two different ways: 1) globally, fixing a global threshold for all
the patients (so we take all the patient dataset into account together) and 2)
Individually for each patient, taking the instances of each patient separately.

4.1 Global Results

By defining the system taking into account all the patients together, through
experimentation we found that the best value for the threshold was 0.4. This
value minimized the number of false positives below the threshold and the number
of false negatives above it. This can be observed in Figure 2, where the output of
the fuzzy system for each input is depicted. The numerical results are presented
in Table 2.

The accuracy of tremor detection (named as tremor accuracy in the table) can
be improved by lowering the threshold, getting then lower no-tremor accuracy.
But, as have been mentioned before, for the patients comfort it is preferable to
ensure that any time there is a tremor episode the neurostimulator is working.

4.2 Results per patient

In this section we perform the analysis by running the system for each patient
individually. As for the global results, we show the numeric values in Table 3. This
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Fig. 5 System operation scheme

Patient Threshold Interval NT
(red)

T
(green)

FP FN Accuracy Global
Accuracy

T
Accuracy

NT
Accuracy

Patient 1 0.5
[0 - 0.5) 69 0 - 0 100%

95.8% 100% 94.5%
(0.5 - 1] 4 22 4 - 84.6%

Patient 2 0.4
[0 - 0.4) - 1 - 1 0%

98.95% 98.95% -
[0.4 - 1] - 95 0 - 100%

Patient 3 0.4
[0 - 0.4) 36 4 - 4 90%

90.31% 83.33% 94.73%
[0.4 - 1] 2 20 2 - 90.9%

Patient 4 0.4
[0 - 0.4) 6 9 - 9 60%

80% 62.5% 100%
[0.4 - 1] 0 15 0 - 100%

Patient 5 0.4
[0 - 0.4) 27 0 - 0 100%

96.96% 100% 96.42%
[0.4 - 1] 1 5 1 - 83.3%

Patient 6 0.4
[0 - 0.4) 39 0 - 0 100%

80.75% 100% 79.59%
[0.4 - 1] 10 3 10 - 23%

Patient 7 0.4
[0 - 0.4) 83 0 - 0 100%

79.82% 100% 78.30%
[0.4 - 1] 23 8 23 - 25.8%

Patient 8 0.4
[0 - 0.4) 6 1 - 1 85.71%

98.82% 98.73% 100%
[0.4 - 1] 0 78 0 - 100%

Patient 9 0.3
[0 - 0.3) 27 1 - 1 96.42%

82.93% 98.76% 56.25%
[0.3 - 1] 21 80 21 - 79.2%

Patient 10 0.4
[0 - 0.4) 4 3 - 3 57.14%

55.16% 80% 28.57%
[0.4 - 1] 10 12 10 - 54.54%

Table 3 Results per patient

time, we include the column threshold, which indicates from which output value
the system decides to apply stimulation. The graphical results are illustrated in
Figure 3.

5 Discussion

The system is able to reach an accuracy of 100% in tremor detection for 4 out of
10 of the patients. For other 3 out of 10 of the patients the number is almost 99%.
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Fig. 6 System operation scheme
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For 2 out of 10 of the patients the accuracy reaches 80%. Unfortunately in the
case of one patient the system was only able to automatically detect 62% of the
tremor episodes.

Moreover, the system is also able to reach high levels of accuracy for no-tremor
episodes, as shown in the last column of Tables 2 and 3. This implies an improve-
ment of 82% (for the global evaluation) in comparison with the neurostimulators
used nowadays. This improvement is even higher when we evaluate the system for
each patient, reaching the 100% in some cases.

The accuracy differences among patients are due to the fact, as can also be
observed in the figures, that there is a clear separation between episodes of tremor
and rest in some patients, whilst this segregation is not so clear in others. The
physiological cause of this is unknown at present, and could be due to a misplacing
in the electrode positioning. However, showing such differences clearly points to
areas of further study.

With patient number 4 an accuracy of tremor detection of only 62.5% was
achieved, however for this patient an accuracy of 100% was achieved for no-tremor
detection. Therefore a solution to improve the performance in these situations
could be to lower the threshold. This would though slightly increase the false
positives but increase the tremor detection accuracy, which is the priority. As we
previously pointed out, an increase in the false positive detection rate would not
be harmful for the patient. So, despite this, the performance of the system would
be superior to the one offered by the solutions currently used.

6 Conclusions

In this work we have proposed a real-time resting tremor detection system which
could be a first step towards demand driven stimulation, providing more intelligent
healthcare for patients who suffer from Parkinson’s Disease.

The results are favourable, in the sense that 100% accuracy in tremor detection
can be achieved in almost half of the cases. In fact only 3 out of the 10 cases we
obtained an accuracy lower than 98.7%. Moreover, even in those cases, the system
allowed a gain adjustment which increased the accuracy. For all the patients, a
system such as the one proposed in this paper would improve the stimulation
performance compared to the current stimulation systems, which basically consist
of continuous stimulation.

In this study we used synchronization measures as features for tremor de-
tection. We have selected the two measures which are most effective for tremor
detection. It would be desirable to carry out an in depth study on the level of syn-
chronization between basal ganglia and muscle effectors in order to unveil why in
some patients the coupling between signals is not so clear. This knowledge would
help in the development of demand driven stimulation device, enabling it to be
more stable across the patient spectrum.
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