3,115 research outputs found

    Trends in Decline of Antiretroviral Resistance among ARV-Experienced Patients in the HIV Outpatient Study: 1999–2008

    Get PDF
    Background. Little is known about temporal trends in frequencies of clinically relevant ARV resistance mutations in HIV strains from U.S. patients undergoing genotypic testing (GT) in routine HIV care. Methods. We analyzed cumulative frequency of HIV resistance among patients in the HIV Outpatient Study (HOPS) who, during 1999–2008 and while prescribed antiretrovirals, underwent GT with plasma HIV RNA >1,000 copies/mL. Exposure ≥4 months to each of three major antiretroviral classes (NRTI, NNRTI and PI) was defined as triple-class exposure (TCE). Results. 906 patients contributed 1,570 GT results. The annual frequency of any major resistance mutations decreased during 1999–2008 (88% to 79%, P = 0.05). Resistance to PIs decreased among PI-exposed patients (71% to 46%, P = 0.010) as exposure to ritonavir-boosted PIs increased (6% to 81%, P < 0.001). Non-significant declines were observed in resistance to NRTIs among NRTI-exposed (82% to 67%), and triple-class-resistance among TCE patients (66% to 41%), but not to NNRTIs among NNRTI-exposed. Conclusions. HIV resistance was common but declined in HIV isolates from subgroups of ARV-experienced HOPS patients during 1999–2008. Resistance to PIs among PI-exposed patients decreased, possibly due to increased representation of patients whose only PI exposures were to boosted PIs

    Classification of paediatric brain tumours by diffusion weighted imaging and machine learning

    Get PDF
    To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned using diffusion weighted imaging across 12 different hospitals using a total of 18 different scanners. Apparent diffusion coefficient maps were produced and histogram data was extracted from tumour regions of interest. Total histograms and histogram metrics (mean, variance, skew, kurtosis and 10th, 20th and 50th quantiles) were used as data input for classifiers with accuracy determined by tenfold cross validation. Mean ADC values from the tumour regions of interest differed between tumour types, (ANOVA P < 0.001). A cut off value for mean ADC between Ependymomas and Medulloblastomas was found to be of 0.984 × 10-3 mm2 s-1 with sensitivity 80.8% and specificity 80.0%. Overall classification for the ADC histogram metrics were 85% using Naïve Bayes and 84% for Random Forest classifiers. The most commonly occurring posterior fossa paediatric brain tumours can be classified using Apparent Diffusion Coefficient histogram values to a high accuracy on a multicentre basis

    Thermally Activated Resonant Magnetization Tunneling in Molecular Magnets: Mn_12Ac and others

    Full text link
    The dynamical theory of thermally activated resonant magnetization tunneling in uniaxially anisotropic magnetic molecules such as Mn_12Ac (S=10) is developed.The observed slow dynamics of the system is described by master equations for the populations of spin levels.The latter are obtained by the adiabatic elimination of fast degrees of freedom from the density matrix equation with the help of the perturbation theory developed earlier for the tunneling level splitting [D. A. Garanin, J. Phys. A, 24, L61 (1991)]. There exists a temperature range (thermally activated tunneling) where the escape rate follows the Arrhenius law, but has a nonmonotonic dependence on the bias field due to tunneling at the top of the barrier. At lower temperatures this regime crosses over to the non-Arrhenius law (thermally assisted tunneling). The transition between the two regimes can be first or second order, depending on the transverse field, which can be tested in experiments. In both regimes the resonant maxima of the rate occur when spin levels in the two potential wells match at certain field values. In the thermally activated regime at low dissipation each resonance has a multitower self-similar structure with progressively narrowing peaks mounting on top of each other.Comment: 18 pages, 8 figure

    Quantum-Classical Transition of the Escape Rate of a Uniaxial Spin System in an Arbitrarily Directed Field

    Full text link
    The escape rate \Gamma of the large-spin model described by the Hamiltonian H = -DS_z^2 - H_zS_z - H_xS_x is investigated with the help of the mapping onto a particle moving in a double-well potential U(x). The transition-state method yields Γ\Gamma in the moderate-damping case as a Boltzmann average of the quantum transition probabilities. We have shown that the transition from the classical to quantum regimes with lowering temperature is of the first order (d\Gamma/dT discontinuous at the transition temperature T_0) for h_x below the phase boundary line h_x=h_{xc}(h_z), where h_{x,z}\equiv H_{x,z}/(2SD), and of the second order above this line. In the unbiased case (H_z=0) the result is h_{xc}(0)=1/4, i.e., one fourth of the metastability boundary h_{xm}=1, at which the barrier disappears. In the strongly biased limit \delta\equiv 1-h_z << 1, one has h_{xc} \cong (2/3)^{3/4}(\sqrt{3}-\sqrt{2})\delta^{3/2}\cong 0.2345 \delta^{3/2}, which is about one half of the boundary value h_{xm} \cong (2\delta/3)^{3/2} \cong 0.5443 \delta^{3/2}.The latter case is relevant for experiments on small magnetic particles, where the barrier should be lowered to achieve measurable quantum escape rates.Comment: 17 PR pages, 16 figures; published versio

    International criteria for electrocardiographic interpretation in athletes: Consensus statement.

    Get PDF
    Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly, advanced by a growing body of scientific data and investigations that both examine proposed criteria sets and establish new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington (USA), to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD

    DNA methylation changes in ovarian cancer are cumulative with disease progression and identify tumor stage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypermethylation of promoter CpG islands with associated loss of gene expression, and hypomethylation of CpG-rich repetitive elements that may destabilize the genome are common events in most, if not all, epithelial cancers.</p> <p>Methods</p> <p>The methylation of 6,502 CpG-rich sequences spanning the genome was analyzed in 137 ovarian samples (ten normal, 23 low malignant potential, 18 stage I, 16 stage II, 54 stage III, and 16 stage IV) ranging from normal tissue through to stage IV cancer using a sequence-validated human CpG island microarray. The microarray contained 5' promoter-associated CpG islands as well as CpG-rich satellite and Alu repetitive elements.</p> <p>Results</p> <p>Results showed a progressive de-evolution of normal CpG methylation patterns with disease progression; 659 CpG islands showed significant loss or gain of methylation. Satellite and Alu sequences were primarily associated with loss of methylation, while promoter CpG islands composed the majority of sequences with gains in methylation. Since the majority of ovarian tumors are late stage when diagnosed, we tested whether DNA methylation profiles could differentiate between normal and low malignant potential (LMP) compared to stage III ovarian samples. We developed a class predictor consisting of three CpG-rich sequences that was 100% sensitive and 89% specific when used to predict an independent set of normal and LMP samples versus stage III samples. Bisulfite sequencing confirmed the NKX-2-3 promoter CpG island was hypermethylated with disease progression. In addition, 5-aza-2'-deoxycytidine treatment of the ES2 and OVCAR ovarian cancer cell lines re-expressed NKX-2-3. Finally, we merged our CpG methylation results with previously published ovarian expression microarray data and identified correlated expression changes.</p> <p>Conclusion</p> <p>Our results show that changes in CpG methylation are cumulative with ovarian cancer progression in a sequence-type dependent manner, and that CpG island microarrays can rapidly discover novel genes affected by CpG methylation in clinical samples of ovarian cancer.</p

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore