575 research outputs found
Identification of a Small Regulatory RNA UspS Associated with the Universal Stress Protein in Lactobacillus Species
The gut microbiome is a complex habitat with many bacterial species, each playing crucial roles in regulating various physiological processes in the body. As the use of probiotics to combat human disease continues to increase, it is important to understand the mechanisms by which probiotic bacteria regulate their interactions with other bacteria and their host. Our exploration of the physiological functions of probiotic bacteria hopes to elucidate the role of small regulatory RNA (sRNA) in regulating gene expression within the microbiome. The goal of this project was to characterize the structure and function of the sRNA, UspS, which is found in probiotic, lactic acid bacteria. In Lactobacillus, UspS is closely associated with a downstream universal stress protein and contains an orphaned Lacto-usp RNA motif of unknown function. Computational methods have been used to study the UspS sRNA sequences from two Lactobacillus species in order to predict the secondary structures, generate 3D models, and search for potential mRNA interactions. Comparative sequence alignments and covariance analysis within the secondary structures predict a pseudoknot structure. The UspS sequence was isolated from two Lactobacillus species and sRNAs were synthesized by in vitro transcription with a T7 RNA polymerase. In preliminary studies, differential scanning fluorimetry of the UspS sRNA was able to confirm the presence of stable secondary structures. Future work will be focused on the structure of the pseudoknot region of UspS and its role in regulating the expression of the downstream universal stress protein
A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II
During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning
The Q(weak) experimental apparatus
The Jefferson Lab experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise (e) over right arrowp asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. The experiment employed 180 mu A of 89% longitudinally polarized electrons whose helicity was reversed 960 times per second. The electrons were accelerated to 1.16 GeV and directed to a beamline with extensive instrumentation to measure helicity-correlated beam properties that can induce false asymmetries. Muller and Compton polarimetry were used to measure the electron beam polarization to better than 1%. The electron beam was incident on a 34.4 cm liquid hydrogen target. After passing through a triple collimator system, scattered electrons between 5.8 degrees and 11.6 degrees were bent in the toroidal magnetic field of a resistive copper-coil magnet. The electrons inside this acceptance were focused onto eight fused silica Cherenkov detectors arrayed symmetrically around the beam axis. A total scattered electron rate of about 7 GHz was incident on the detector array. The detectors were read out in integrating mode by custom-built low-noise pre-amplifiers and 18-bit sampling ADC modules. The momentum transfer Q(2)=0.025 GeV2 was determined using dedicated low-current (similar to 100 pA) measurements with a set of drift chambers before (and a set of drift chambers and trigger scintillation counters after) the toroidal magnet. (C) 2015 Elsevier B.V All rights reserved
ProteomeScout: A repository and analysis resource for post-translational modifications and proteins
ProteomeScout (https://proteomescout.wustl.edu) is a resource for the study of proteins and their post-translational modifications (PTMs) consisting of a database of PTMs, a repository for experimental data, an analysis suite for PTM experiments, and a tool for visualizing the relationships between complex protein annotations. The PTM database is a compendium of public PTM data, coupled with user-uploaded experimental data. ProteomeScout provides analysis tools for experimental datasets, including summary views and subset selection, which can identify relationships within subsets of data by testing for statistically significant enrichment of protein annotations. Protein annotations are incorporated in the ProteomeScout database from external resources and include terms such as Gene Ontology annotations, domains, secondary structure and non-synonymous polymorphisms. These annotations are available in the database download, in the analysis tools and in the protein viewer. The protein viewer allows for the simultaneous visualization of annotations in an interactive web graphic, which can be exported in Scalable Vector Graphics (SVG) format. Finally, quantitative data measurements associated with public experiments are also easily viewable within protein records, allowing researchers to see how PTMs change across different contexts. ProteomeScout should prove useful for protein researchers and should benefit the proteomics community by providing a stable repository for PTM experiments
Bordetella pertussis Autotransporter Vag8 Binds Human C1 Esterase Inhibitor and Confers Serum Resistance
Bordetella pertussis employs numerous strategies to evade the immune system, including the ability to resist killing via complement. Previously we have shown that B. pertussis binds a complement regulatory protein, C1 esterase inhibitor (C1inh) to its surface in a Bvg-regulated manner (i.e. during its virulence phase), but the B. pertussis factor was not identified. Here we set out to identify the B. pertussis C1inh-binding factor. Using a serum overlay assay, we found that this factor migrates at approximately 100 kDa on an SDS-PAGE gel. To identify this factor, we isolated proteins of approximately 100 kDa from wild type strain BP338 and from BP347, an isogenic Bvg mutant that does not bind C1inh. Using mass spectrometry and bioinformatics, we identified the autotransporter protein Vag8 as the putative C1inh binding protein. To prove that Vag8 binds C1inh, vag8 was disrupted in two different B. pertussis strains, namely BP338 and 18–323, and the mutants were tested for their ability to bind C1inh in a surface-binding assay. Neither mutant strain was capable of binding C1inh, whereas a complemented strain successfully bound C1inh. In addition, the passenger domain of Vag8 was expressed and purified as a histidine-tagged fusion protein and tested for C1inh-binding in an ELISA assay. Whereas the purified Vag8 passenger bound C1inh, the passenger domain of BrkA (a related autotransporter protein) failed to do so. Finally, serum assays were conducted to compare wild type and vag8 mutants. We determined that vag8 mutants from both strains were more susceptible to killing compared to their isogenic wild type counterparts. In conclusion, we have discovered a novel role for the previously uncharacterized protein Vag8 in the immune evasion of B. pertussis. Vag8 binds C1inh to the surface of the bacterium and confers serum resistance
First upper limits from LIGO on gravitational wave bursts
We report on a search for gravitational wave bursts using data from the first
science run of the LIGO detectors. Our search focuses on bursts with durations
ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity
band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than
1.6 events per day at 90% confidence level. This result is interpreted in terms
of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians)
as a function of their root-sum-square strain h_{rss}; typical sensitivities
lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on
waveform. We discuss improvements in the search method that will be applied to
future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos
and updated a few reference
Analysis of LIGO data for gravitational waves from binary neutron stars
We report on a search for gravitational waves from coalescing compact binary
systems in the Milky Way and the Magellanic Clouds. The analysis uses data
taken by two of the three LIGO interferometers during the first LIGO science
run and illustrates a method of setting upper limits on inspiral event rates
using interferometer data. The analysis pipeline is described with particular
attention to data selection and coincidence between the two interferometers. We
establish an observational upper limit of 1.7 \times 10^{2}M_\odot$.Comment: 17 pages, 9 figure
Searching for gravitational waves from known pulsars
We present upper limits on the amplitude of gravitational waves from 28
isolated pulsars using data from the second science run of LIGO. The results
are also expressed as a constraint on the pulsars' equatorial ellipticities. We
discuss a new way of presenting such ellipticity upper limits that takes
account of the uncertainties of the pulsar moment of inertia. We also extend
our previous method to search for known pulsars in binary systems, of which
there are about 80 in the sensitive frequency range of LIGO and GEO 600.Comment: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figure
- …