337 research outputs found
Andreev rectifier: a nonlocal conductance signature of topological phase transitions
The proximity effect in hybrid superconductor-semiconductor structures,
crucial for realizing Majorana edge modes, is complicated to control due to its
dependence on many unknown microscopic parameters. In addition, defects can
spoil the induced superconductivity locally in the proximitised system which
complicates measuring global properties with a local probe. We show how to use
the nonlocal conductance between two spatially separated leads to probe three
global properties of a proximitised system: the bulk superconducting gap, the
induced gap, and the induced coherence length. Unlike local conductance
spectroscopy, nonlocal conductance measurements distinguish between
non-topological zero-energy modes localized around potential inhomogeneities,
and true Majorana edge modes that emerge in the topological phase. In addition,
we find that the nonlocal conductance is an odd function of bias at the
topological phase transition, acting as a current rectifier in the low-bias
limit. More generally, we identify conditions for crossed Andreev reflection to
dominate the nonlocal conductance and show how to design a Cooper pair splitter
in the open regime.Comment: 11 pages, 13 figure
Readability of patient education materials in ophthalmology: a single-institution study and systematic review
BACKGROUND: Patient education materials should be written at a level that is understandable for patients with low health literacy. The aims of this study are (1) to review the literature on readability of ophthalmic patient education materials and (2) to evaluate and revise our institution’s patient education materials about glaucoma using evidence-based guidelines on writing for patients with low health literacy. METHODS: A systematic search was conducted on the PubMed/MEDLINE database for studies that have evaluated readability level of ophthalmic patient education materials, and the reported readability scores were assessed. Additionally, we collected evidence-based guidelines for writing easy-to-read patient education materials, and these recommendations were applied to revise 12 patient education handouts on various glaucoma topics at our institution. Readability measures, including Flesch-Kincaid Grade Level (FKGL), and word count were calculated for the original and revised documents. The original and revised versions of the handouts were then scored in random order by two glaucoma specialists using the Suitability Assessment of Materials (SAM) instrument, a grading scale used to evaluate suitability of health information materials for patients. Paired t test was used to analyze changes in readability measures, word count, and SAM score between original and revised handouts. Finally, five glaucoma patients were interviewed to discuss the revised materials, and patient feedback was analyzed qualitatively. RESULTS: Our literature search included 13 studies that evaluated a total of 950 educational materials. Among the mean FKGL readability scores reported in these studies, the median was 11 (representing an eleventh-grade reading level). At our institution, handouts’ readability averaged a tenth-grade reading level (FKGL = 10.0 ± 1.6), but revising the handouts improved their readability to a sixth-grade reading level (FKGL = 6.4 ± 1.2) (p < 0.001). Additionally, the mean SAM score of our institution’s handouts improved from 60 ± 7 % (adequate) for the original versions to 88 ± 4 % (superior) for the revised handouts (p < 0.001). CONCLUSIONS: Our systematic review of the literature reveals that ophthalmic patient education materials are consistently written at a level that is too high for many patients to understand. Our institution’s experience suggests that applying guidelines on writing easy-to-understand material can improve the readability and suitability of educational materials for patients with low health literacy
Gas Accretion and Giant Lyman-alpha Nebulae
Several decades of observations and discoveries have shown that high-redshift
AGN and massive galaxies are often surrounded by giant Lyman-alpha nebulae
extending in some cases up to 500 kpc in size. In this review, I discuss the
properties of the such nebulae discovered at z>2 and their connection with gas
flows in and around the galaxies and their halos. In particular, I show how
current observations are used to constrain the physical properties and origin
of the emitting gas in terms of the Lyman-alpha photon production processes and
kinematical signatures. These studies suggest that recombination radiation is
the most viable scenario to explain the observed Lyman-alpha luminosities and
Surface Brightness for the large majority of the nebulae and imply that a
significant amount of dense, ionized and cold clumps should be present within
and around the halos of massive galaxies. Spectroscopic studies suggest that,
among the giant Lyman-alpha nebulae, the one associated with radio-loud AGN
should have kinematics dominated by strong, ionized outflows within at least
the inner 30-50 kpc. Radio-quiet nebulae instead present more quiescent
kinematics compatible with stationary situation and, in some cases, suggestive
of rotating structures. However, definitive evidences for accretion onto
galaxies of the gas associated with the giant Lyman-alpha emission are not
unambiguously detected yet. Deep surveys currently ongoing using other bright,
non-resonant lines such as Hydrogen H-alpha and HeII1640 will be crucial to
search for clearer signatures of cosmological gas accretion onto galaxies and
AGN.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics
and Space Science Library, eds. A. J. Fox & R. Dave', to be published by
Springe
Observational Diagnostics of Gas Flows: Insights from Cosmological Simulations
Galactic accretion interacts in complex ways with gaseous halos, including
galactic winds. As a result, observational diagnostics typically probe a range
of intertwined physical phenomena. Because of this complexity, cosmological
hydrodynamic simulations have played a key role in developing observational
diagnostics of galactic accretion. In this chapter, we review the status of
different observational diagnostics of circumgalactic gas flows, in both
absorption (galaxy pair and down-the-barrel observations in neutral hydrogen
and metals; kinematic and azimuthal angle diagnostics; the cosmological column
density distribution; and metallicity) and emission (Lya; UV metal lines; and
diffuse X-rays). We conclude that there is no simple and robust way to identify
galactic accretion in individual measurements. Rather, progress in testing
galactic accretion models is likely to come from systematic, statistical
comparisons of simulation predictions with observations. We discuss specific
areas where progress is likely to be particularly fruitful over the next few
years.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics
and Space Science Library, eds. A. J. Fox & R. Dave, to be published by
Springer. Typos correcte
Gravitational Instabilities in a proto-solar like disc I.: Dynamics and Chemistry
To date, most simulations of the chemistry in protoplanetary discs have used 1 + 1D or 2D axisymmetric α-disc models to determine chemical compositions within young systems. This assumption is inappropriate for non-axisymmetric, gravitationally unstable discs, which may be a significant stage in early protoplanetary disc evolution. Using 3D radiative hydrodynamics, we have modelled the physical and chemical evolution of a 0.17 M⊙ self-gravitating disc over a period of 2000 yr. The 0.8 M⊙ central protostar is likely to evolve into a solar-like star, and hence this Class 0 or early Class I young stellar object may be analogous to our early Solar system. Shocks driven by gravitational instabilities enhance the desorption rates, which dominate the changes in gas-phase fractional abundances for most species. We find that at the end of the simulation, a number of species distinctly trace the spiral structure of our relatively low-mass disc, particularly CN. We compare our simulation to that of a more massive disc, and conclude that mass differences between gravitationally unstable discs may not have a strong impact on the chemical composition. We find that over the duration of our simulation, successive shock heating has a permanent effect on the abundances of HNO, CN and NH3, which may have significant implications for both simulations and observations. We also find that HCO+ may be a useful tracer of disc mass. We conclude that gravitational instabilities induced in lower mass discs can significantly, and permanently, affect the chemical evolution, and that observations with high-resolution instruments such as Atacama Large Millimeter/submillimeter Array (ALMA) offer a promising means of characterizing gravitational instabilities in protosolar discs
The energy and dynamics of trapped radiative feedback with stellar winds
In this paper, we explore the significant, non-linear impact that stellar winds have on H II regions. We perform a parameter study using three-dimensional radiative magnetohydrodynamic simulations of wind and ultraviolet radiation feedback from a 35 M⊙ star formed self-consistently in a turbulent, self-gravitating cloud, similar to the Orion Nebula (M42) and its main ionizing source θ1 Ori C. Stellar winds suppress early radiative feedback by trapping ionizing radiation in the shell around the wind bubble. Rapid breakouts of warm photoionized gas (‘champagne flows’) still occur if the star forms close to the edge of the cloud. The impact of wind bubbles can be enhanced if we detect and remove numerical overcooling caused by shocks crossing grid cells. However, the majority of the energy in the wind bubble is still lost to turbulent mixing between the wind bubble and the gas around it. These results begin to converge if the spatial resolution at the wind bubble interface is increased by refining the grid on pressure gradients. Wind bubbles form a thin chimney close to the star, which then expands outwards as an extended plume once the wind bubble breaks out of the dense core the star formed in, allowing them to expand faster than a spherical wind bubble. We also find wind bubbles mixing completely with the photoionized gas when the H II region breaks out of the cloud as a champagne flow, a process we term ‘hot champagne’
STARBENCH: the D-type expansion of an HII region
STARBENCH is a project focused on benchmarking and validating different star formation and stellar feedback codes. In this first STARBENCH paper we perform a comparison study of the D-type expansion of an H II region. The aim of this work is to understand the differences observed between the 12 participating numerical codes against the various analytical expressions examining the D-type phase of H II region expansion. To do this, we propose two well-defined tests which are tackled by 1D and 3D grid- and smoothed particle hydrodynamics-based codes. The first test examines the ‘early phase’ D-type scenario during which the mechanical pressure driving the expansion is significantly larger than the thermal pressure of the neutral medium. The second test examines the ‘late phase’ D-type scenario during which the system relaxes to pressure equilibrium with the external medium. Although they are mutually in excellent agreement, all 12 participating codes follow a modified expansion law that deviates significantly from the classical Spitzer solution in both scenarios. We present a semi-empirical formula combining the two different solutions appropriate to both early and late phases that agrees with high-resolution simulations to ≲ 2 per cent. This formula provides a much better benchmark solution for code validation than the Spitzer solution. The present comparison has validated the participating codes and through this project we provide a data set for calibrating the treatment of ionizing radiation hydrodynamics codes
Validity of sports watches when estimating energy expenditure during running
The aim of this study was to assess the accuracy of three different sport watches in estimating energy expenditure during aerobic and anaerobic running
Validation of a glaucoma knowledge assessment in glaucoma patients
SUMMARY: To develop metrics to identify knowledge deficits and barriers to learning in glaucoma patients, this study seeks to validate a glaucoma knowledge assessment to use in the evaluation of knowledge in glaucoma patients. PURPOSE: Glaucoma treatment adherence appears to improve when patients demonstrate a greater knowledge of the disease and its treatment. This study seeks to validate a glaucoma knowledge assessment in a glaucoma patient population to assist in patient educational assessments and interventions. PATIENTS AND METHODS: The National Eye Health Education Program’s (NEHEP) glaucoma knowledge assessment has previously been suggested as a useful measure to assess glaucoma patient’s knowledge. This questionnaire was administered in glaucoma patients along with a more comprehensive 49-question examination. Demographic data and health literacy were assessed. Statistical analyses were performed to assess the validity of the assessments. RESULTS: A total of 12 glaucoma patients completed the knowledge assessments. The mean ± standard deviation age of the patients was 69±14 years, and the duration of glaucoma was 14±13 years. The participants’ mean score on the NEHEP assessment was 7.3±0.8 (of 10, 73% correct) vs 29.3±7.3 (of 49, 60% correct) on the comprehensive assessment. The value of coefficient α was 0.592 for NEHEP and 0.872 for the cumulative assessment. The P-value (proportion of examinees answering correctly) ranged from 0 to 1 for individual questions. Item point–biserial correlation values for each question ranged from −0.402 to 0.813. DISCUSSION: The NEHEP quiz may be a good starting point for the development of a reliable knowledge assessment tool to measure and monitor glaucoma knowledge, due to its concise nature and reasonable level of difficulty. This study suggests that questions included in the currently available questionnaires vary widely in difficulty and ability to differentiate knowledge level, which may ultimately compromise reliability and utility of existing examinations. Further examination of individual questions and teaching points included in the current assessments may help to construct increasingly reliable and useful knowledge assessments in the future
- …
