31 research outputs found

    Pembuatan Peta Zona Nilai Ekonomi Kawasan (Znek) Menggunakan Tcm (Travel Cost Method) Dan Cvm (Contingent Valuation Method) Berbasis Sistem Informasi Geografis (Studi Kasus : Candi Prambanan)

    Full text link
    Prambanan Temple has potential as a tourist attraction. The strategic location which have historical value, makes this Place became one tourist destination areas Klaten. Based on this, we need a Zone Map Economic Value Areas (ZNEK) to the Prambanan area of the palace to estimate the economic value and benefits based on willingness to pay (WTP) tourists and the people who benefit from the region. Sampling method (respondents) were used in this research is non probability sampling with accidental sampling technique, where respondents are those who by chance / accidental encountered in the study area and can be used as a sample, if it is considered that the person who happened to be found suitable as a data source. Data processing method used is multiple linear regression analysis and calculation software WTP using Maple 17.Results obtained from the study of this final project is the Economic Value Area Zone maps with the total value of economic attraction Prambanan Temple Rp.32.851.020.029.000,- Maps generated from the integration of economic and spatial aspects can be used as an objective consideration of the decision-making process in the spatial field and economic field for the government to optimize and simplify the process of the asset\u27s management and monitoring the natural resources potential. Besides being able to provide a solution for the management of resource constraints of the economy in various regions in Indonesia, the map can be used too as a learning tool for the public society to bring awareness of the importance of potential belonging

    Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion

    Get PDF
    Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field 'hot spots'. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interactions, highly enhanced nonlinearities and nanoscale waveguiding. Unfortunately, these large enhancements come at the price of high optical losses due to absorption in the metal, severely limiting real-world applications. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, here we demonstrate an approach that overcomes these limitations. We show that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence and surface enhanced Raman scattering, while at the same time generating a negligible temperature increase in their hot spots and surrounding environments

    Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters

    Get PDF
    Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure. Luminescence was observed from Si-ncs formed in silicon-rich silicon nitride films with a broad range of compositions and grown using three different types of chemical vapour deposition systems. Photoluminescence (PL) experiments revealed broad, tunable emissions with peaks ranging from the near-infrared across the full visible spectrum. The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity. The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased. X-ray absorption near edge structure at the Si K- and L3,2-edges exhibited composition-dependent phase separation and structural re-ordering of the Si-ncs and silicon nitride host matrix under different post-deposition annealing conditions and generally supported the trends observed in the PL spectra

    Decoupling absorption and emission processes in super-resolution localisation of emitters in a plasmonic hotspot

    Get PDF
    The absorption process of an emitter close to a plasmonic antenna is enhanced due to strong local electromagnetic (EM) fields. The emission process, if resonant with the plasmonic system, re-radiates to the far-field by coupling with the antenna due to the availability of plasmonic states. This increases the local density of states (LDOS), effectively providing more, or alternate, pathways for emission. Through the mapping of localized emission events from single molecules close to plasmonic antennas – performed using far-field data – one gains combined information on both the local EM field strength and the LDOS available. The localization from these emission-coupled events generally do not, therefore, report the real position of the molecules, nor the EM enhancement distribution at the illuminating wavelength. Here we propose the use of a fluorescent molecule with a large Stokes shift in order to spectrally decouple the emission process of the dye from the plasmonic system, leaving only the absorption strongly in resonance with the enhanced EM field in the antenna’s vicinity. We demonstrate that this technique provides an effective way of exploring either the EM field or the LDOS with nanometre spatial resolution
    corecore