517 research outputs found

    alternating dynamics of segregation and integration in human eeg functional networks during working memory task

    Get PDF
    Abstract Brain functional networks show high variability in short time windows but mechanisms governing these transient dynamics remain unknown. In this work, we studied the temporal evolution of functional brain networks involved in a working memory (WM) task while recording high-density electroencephalography (EEG) in human normal subjects. We found that functional brain networks showed an initial phase characterized by an increase of the functional segregation index followed by a second phase where the functional segregation faded after the prevailing the functional integration. Notably, wrong trials were associated with different or disrupted sequences of the segregation-integration profiles and measures of network centrality and modularity were able to identify crucial aspects of the oscillatory network dynamics. Additionally, computational investigations further supported the experimental results. The brain functional organization may respond to the information processing demand of a WM task following a 2-step atomic scheme wherein segregation and integration alternately dominate the functional configurations

    Drude model and Lifshitz formula

    Full text link
    Since nearly 10 years, it is known that inserting the permittivity of the Drude model into the Lifshitz formula for free energy causes a violation of the third law of thermodynamics. In this paper we show that the standard Matsubara formulation for free energy contains a contribution that is non-perturbative in the relaxation parameter. We argue that the correct formula must have a perturbative expansion and conclude that the standard Matsubara formulation with the permittivity of the Drude model inserted is not correct. We trace the non-perturbative contribution in the complex frequency plane, where it shows up as a self-intersection or a bifurcation of the integration path.Comment: accepted for publication in EPJ

    On the Progenitors of Core-Collapse Supernovae

    Full text link
    Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is thought to usually be accompanied by the ejection of the star's envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of "failed supernovae", and our understanding of the core-collapse explosion mechanism.Comment: 7 Pages, invited review accepted for publication by Astrophysics and Space Science (special HEDLA 2010 issue

    Geometry and material effects in Casimir physics - Scattering theory

    Full text link
    We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, to nonzero temperatures, and to spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. This approach, which combines methods of statistical physics and scattering theory, is well suited to analyze many diverse phenomena. We illustrate its power and versatility by a number of examples, which show how the interplay of geometry and material properties helps to understand and control Casimir forces. We also examine whether electrodynamic Casimir forces can lead to stable levitation. Neglecting permeabilities, we prove that any equilibrium position of objects subject to such forces is unstable if the permittivities of all objects are higher or lower than that of the enveloping medium; the former being the generic case for ordinary materials in vacuum.Comment: 44 pages, 11 figures, to appear in upcoming Lecture Notes in Physics volume in Casimir physic

    Is prnt a pseudogene? identification of ram prt in testis and ejaculated spermatozoa

    Get PDF
    A hallmark of prion diseases or transmissible spongiform encephalopaties is the conversion of the cellular prion protein (PrPC), expressed by the prion gene (prnp), into an abnormally folded isoform (PrPSc) with amyloid-like features that causes scrapie in sheep among other diseases. prnp together with prnd (which encodes a prion-like protein designated as Doppel), and prnt (that encodes the prion protein testis specific - Prt) with sprn (shadow of prion protein gene, that encodes Shadoo or Sho) genes, constitute the "prion gene complex". Whereas a role for prnd in the proper functioning of male reproductive system has been confirmed, the function of prnt, a recently discovered prion family gene, comprises a conundrum leading to the assumption that ruminant prnt is a pseudogene with no protein expression. The main objective of the present study was to identify Prt localization in the ram reproductive system and simultaneously to elucidate if ovine prnt gene is transcribed into protein-coding RNA. Moreover, as Prt is a prnp-related protein, the amyloid propensity was also tested for ovine and caprine Prt. Recombinant Prt was used to immunize BALB/c mice, and the anti-Prt polyclonal antibody (APPA) immune response was evaluated by ELISA and Western Blot. When tested by indirect immunofluorescence, APPA showed high avidity to the ram sperm head apical ridge subdomain, before and after induced capacitation, but did not show the same behavior against goat spermatozoa, suggesting high antibody specificity against ovine-Prt. Prt was also found in the testis when assayed by immunohistochemistry during ram spermatogenesis, where spermatogonia, spermatocytes, spermatids and spermatozoa, stained positive. These observations strongly suggest ovine prnt to be a translated protein-coding gene, pointing to a role for Prt protein in the ram reproductive physiology. Besides, caprine Prt appears to exhibit a higher amyloid propensity than ovine Prt, mostly associated with its phenylalanine residue.publishersversionpublishe

    IBIS: The Imager on-board INTEGRAL

    Get PDF
    The IBIS telescope is the high angular resolution gamma-ray imager on-board the INTEGRAL Observatory, successfully launched from Baikonur (Kazakhstan) the 17th of October 2002. This medium size ESA project, planned for a 2 year mission with possible extension to 5, is devoted to the observation of the gamma-ray sky in the energy range from 3 keV to 10 MeV (Winkler 2001). The IBIS imaging system is based on two independent solid state detector arrays optimised for low ( 15-1000 keV) and high ( 0.175-10.0 MeV) energies surrounded by an active VETO System. This high efficiency shield is essential to minimise the background induced by high energy particles in the highly excentric out of van Allen belt orbit. A Tungsten Coded Aperture Mask, 16 mm thick and ~1 squared meter in dimension is the imaging device. The IBIS telescope will serve the scientific community at large providing a unique combination of unprecedented high energy wide field imaging capability coupled with broad band spectroscopy and high resolution timing over the energy range from X to gamma rays. To date the IBIS telescope is working nominally in orbit since more than 9 month.Reglero Velasco, Victor, [email protected]

    The Spin-Dependent Structure Functions of Nuclei in the Meson-Nucleon Theory

    Full text link
    A theoretical approach to the investigation of spin-dependent structure functions in deep inelastic scattering of polarized leptons off polarized nuclei, based on the effective meson-nucleon theory and operator product expansion method, is proposed and applied to deuteron and 3He^3He. The explicit forms of the moments of the deuteron and 3He^3He spin-dependent structure functions are found and numerical estimates of the influence of nuclear structure effects are presented.Comment: 42 pages revtex, 7 postscript figures available from above e-mail upon request. Perugia preprint DFUPG 92/9
    • …
    corecore