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Alternating Dynamics of Segregation and Integration in Human EEG
Functional Networks During Working-memory Task
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Abstract—Brain functional networks show high variability in short time windows but mechanisms governing
these transient dynamics remain unknown. In this work, we studied the temporal evolution of functional brain net-
works involved in a working memory (WM) task while recording high-density electroencephalography (EEG) in
human normal subjects. We found that functional brain networks showed an initial phase characterized by an
increase of the functional segregation index followed by a second phase where the functional segregation faded
after the prevailing the functional integration. Notably, wrong trials were associated with different or disrupted
sequences of the segregation-integration profiles and measures of network centrality and modularity were able
to identify crucial aspects of the oscillatory network dynamics. Additionally, computational investigations further
supported the experimental results. The brain functional organization may respond to the information processing
demand of a WM task following a 2-step atomic scheme wherein segregation and integration alternately dominate
the functional configurations. � 2017 The Author(s). Published by Elsevier Ltd on behalf of IBRO. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Key words: brain electroencephalographic dynamics, functional connectivity, functional segregation, functional integration,

working memory.
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INTRODUCTION

The human brain can be portrayed as a giant complex

network from the twofold point of view of anatomical

and functional perspectives, the former probing the

stable structural connections among neurons or

neuronal populations, the latter focusing on the

functional connections exiting in the huge dynamic

repertoire of various transient outputs (actions,

perceptions, cognition, etc.) (Tononi et al., 1998;

Bullmore and Sporns, 2009, 2012; Park and Friston,

2013). From the functional standpoint, major efforts have

been spent to provide quantitative appraisal of brain net-

work dynamic events in different experimental or clinical

conditions. Two functional states of brain networks repre-

sent a generalized hallmark of brain network dynamics:

the functional segregation represented by mutual func-

tional independence of the brain districts, and its counter-

part, the functional integration, the ability of the brain to

efficiently and contextually combine information from dif-
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ferent regions. So far, these principia represent one of

the most important paradigms in brain physiology and

lay their roots in the realization that brain networks are

organized in modules and in few cores of densely inter-

connected hubs. Modules endorse the ability of brain net-

works to segregate information while core hubs provide

the integration substrate. Many authors also reported

brain topological configurations coherent with the small-

world network model (Watts and Strogatz, 1998) enriched

by a core-periphery organization (van den Heuvel and

Sporns, 2011).

So far, most studies on the brain functional

connectivity have been carried out on Blood Oxygen

Level-Dependent (BOLD) signals in functional magnetic

resonance imaging (fMRI). A drawback of fMRI signals

is inherent to slowness of the BOLD signal which peaks

about 2 s after the neural activity, collapsing the great

variability of brain networks highlighted at high temporal

resolutions (Whitlow et al., 2011; Chu et al., 2012;

Hutchison et al., 2013a). This coarse assumption of sta-

tionarity violates most of the brain information processing

time-scales which take place over tens or hundreds of mil-

liseconds (Park and Friston, 2013; Sporns, 2013a,b).

Despite the brain networks intrinsically and dramatically

change over time, the current knowledge about functional

networks is primarily achieved under heavy stationarity

assumptions.
ons.org/licenses/by-nc-nd/4.0/).
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The scope of this work is to study the brain topological

information processes within task-evoked events by high-

density electroencephalography (EEG) during n-back

working memory (WM) tests, which explores short-term

memory performance in rapidly changing information

environments. In equivalent terms, this means to

develop a model for functional brain network non-

stationarity during the cognitive task. To this purpose,

we recorded the brain activity of 21 healthy volunteers

involved in a visual WM task in order to examine the co-

activations of large brain regions with 128 channel

electroencephalograms. Indeed, previous works suggest

that interareal phase synchrony sustains the object

representation and the information maintenance in

visual WM tasks (Blinowska et al., 2013; Palva et al.,

2013).

Our results showed that during the execution of a task,

brain networks encountered a first stage dominated by

functional segregation followed by a second stage

where functional integration prevailed. When

participants failed to select the correct answer, we

observed different dynamics suggesting that the former

pattern was necessary to achieve effective cognitive

performances. Further network analyses revealed that

the working load of nodes and their core-periphery

organization play crucial roles in such dynamics. Further

computational in silico investigations corroborated the

experimental results and provided a formal explanatory

theory of the discovered phenomenon.
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EXPERIMENTAL PROCEDURES

Ethical statement

The experiment was conducted with the understanding

and written consent of each participant according to the

Declaration of Helsinki (BMJ 1991; 302: 1194) and in

compliance with the APA ethical standards for the

treatment of human volunteers (1992, American

Psychological Association). The ethics committee of the

Carlo Besta Neurological Institute (Milan, Italy) approved

the experimental protocol. The whole experiment lasted

about one hour and volunteers were not paid for their

participation.
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Experiment description

We selected 21 young adult subjects (age average = 25,

SD = 4; male = 11) and we used a freely available

software implementation of the N-back WM task (Jaeggi

et al., 2003). Criteria for selection considered anatomical

features of the head in order to fit requirements of our

EEG cap (GSN-HydroCel-128, EGI). None of the volun-

teers was taking psychoactive medication and never

experienced psychiatric episodes. Subjects were previ-

ously instructed about the graphical task interface and a

short toy session of the 1-back task was allowed to get

a good familiarity with the user interface. Subjects under-

went 3 sessions of 41 trials of 1-back task and 3 sessions

of 41 trials of 2-back task. The number of trials was a

compromise between the highest desirable statistical

power and the subject perseverance. The task was con-
Please cite this article in press as: Zippo AG et al. Alternating Dynamics of Segregation and Integration in Human E
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stituted by a sequential presentation on a laptop monitor

of colored boxes dispersed on a 3 � 3 matrix (Fig. 1A).

Subjects had to keep in mind the color and the position

on the screen (out of nine possible). In each trial a colored

box appeared on a randomly selected position of the grid

for 500 ms. The subjects were asked to respond within

2500 ms by pressing at most 2 buttons to indicate a color

or a position match (or both) between the current box and

that seen in the previous (one previous for 1-back and two

previous for 2-back) trials. Since the used N-back soft-

ware did not track the timestamps of user responses,

we redirected the input system into a Sony Playstation

GamePad whose buttons were replaced by touch sensors

that simultaneously delivered signals both to the N-back

software and to the EGI amplifier.

The subjects were comfortably seated, their arms

leaning on a surface to avoid muscle contraction

interference and their feet placed on a platform.

Participants performed variably on the working-memory

tasks averaged and performance was generally good.

Indeed, the mean percentage of correct trials was

94.1% ± 6.8 (SD) for 1-back sessions and 89.3% ±

10.6 (SD) for 2-back sessions; the mean reaction time

was 0.56 s ± 0.19.
EEG acquisition

We recorded the electroencephalographic activity with a

EGI Net Station 400 equipped with a 128 electrode

GSN-HydroCel cap. The cap was positioned according

to the vendor guidelines by matching three reference

electrodes around the scalp (Nasion, i.e. the intersection

of the frontal bone and two nasal bones, Inion, i.e.

external occipital protuberance and the midpoint

between them). Prior to acquisition, we measured

amplifier gains and electrode impedances. We fixed

those electrodes with impedance values greater than an

upper threshold of 70 KOhm by adding few drops of a

hydrosaline solution to improve the conductance

between the electrode sponge and the scalp. We

followed this procedure until all electrode impedances

were below the threshold. The wlectroencephalographic

signals were acquired at a sampling frequency of 500

Hz. A whole recording session lasted around 30 min.

Since we had no tool to measure the exact position of

electrodes or to elucidate the anatomical substrate of

participants (e.g. MRI) we excluded any further

investigation that involved reliable structural information

(cortical mapping, source localization, etc.).
EEG processing

EEG recorded sessions were processed in Matlab with

the eeglab toolbox (Delorme and Makeig, 2004) and with

‘‘in-house” developed routines. Raw signals were mean

corrected and filtered (FIR filter, Hamming windowing,

0.1 Hz width, �60 dB of cut-off) in the frequency range

[12,45] Hz of interest for beta and low gamma bands.

Explorations of related literature and our preliminary anal-

yses (Fig. 1E,F) justified the frequency bands. Specifi-

cally, investigations on the WM EEG correlates

identified both beta and low gamma as the most influent
EG Functional Networks During Working-memory Task. Neuroscience (2017), https://doi.org/10.1016/j.
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Fig. 1. Design of the experimental framework. (A) Electrode locations in a two-dimensional mapping of human scalp. Locations are referred to the

standard positions of the GSN-HydroCel-128 EGI cap in the BESA sphere space. (B) Example of the windowing mechanism used in the study. The

ith window is followed by the partially overlapped (i + 1)th window. From the EEG signals from each window a connectivity matrix is extracted (C) by

computing the WPLI value for each couple of EEG signals. (D) Graphs obtained from the above adjacency matrices where nodes are displayed

according to a community layout. (E) Average Evoked Potentials among all subjects and trials, the most powerful and stable frequency bands

elicited by trial trials were the beta and low gamma (12–45 Hz) mainly distributed over the parietal and mediotemporal lobes (F). The average

baseline in the interval [�200, 0] ms (G). Distribution of nodal strength (H) and edge weight (I), central values of the latter, explode in the inset (I0).
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oscillations. Moreover, another recent work showed that

from a functional network perspective, networks extracted

from beta and low gamma bands exhibited same basilar

properties (Bassett et al., 2009), thus, we decided to com-

bine the extraction of the EEG bands of interest in the

range [12,45] Hz to simplify our analyses. Additionally,

during the preliminary analysis to investigate the most

powerful and stable EEG spectral components elicited

by task, signals were filtered to attenuate line noise at

50 Hz using a 0.3-Hz width notch filter (Fig. 1E,F). To

remove physiological (eye movement, respiration, heart-

beat) and extraphysiological (e.g. instrument, environ-

ment) artifacts, we first removed epochs selected by the

semi-automated eeglab routine which seeks for abnormal

data distributions, spectra and trends under the visual

inspection of experts (P.D., G.B.). Then we performed

an Independent Component Analysis (ICA) (Delorme

and Makeig, 2004) of the signals using the standard algo-

rithm provided in the eeglab toolbox (runica). A meticu-

lous visual inspection classified bad independent

components opportunely removed from the EEG signals.

Subsequently EEG signals were split into 246 epochs

corresponding to the 41 trials of 6n-back sessions. We
Please cite this article in press as: Zippo AG et al. Alternating Dynamics of Segregation and Integration in Human E
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used a simple sliding window technique which parted the

3 s of interest of each trial in 10 overlapping windows.

Specifically, we considered the start of each trial 200 ms

before the visual presentation of the box on the screen

grid and the end 2800 ms after such event obtaining 10

time windows for each trial. We considered different

window sizes variable from 500 ms to 2 s to establish

possible conditionings but effects observed in the results

kept the statistical significance (data not shown) and we

eventually chose a window size of 1 s with a sliding step

of 200 ms (timestamps of each window are reported in

Table 1). The chosen time window length was short

enough to capture great variations of functional

connections though preserving robustness of the

estimated synchronization index (WPLI).
Functional connection extraction

To extract the functional connections among electrodes in

each trial, we evaluated several methods based on

synchronization and after a throughout evaluation, we

chose the weighted phase lag index (WPLI) because it

is capable to minimize effects of volume conduction
EG Functional Networks During Working-memory Task. Neuroscience (2017), https://doi.org/10.1016/j.
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Table 1. Time windows in task analysis. All windows had a width of

1000 ms and the sliding step was of 200 ms. Each trial lasted 3 s and

for analysis we extracted data samples �200 ms before and 2600 ms

after the presentation of the visual pattern

Window

number

Left bound

(ms)

Right bound

(ms)

Centroid

(ms)

1 �200 800 300

2 0 1000 500

3 200 1200 700

4 400 1400 900

5 600 1600 1100

6 800 1800 1300

7 1000 2000 1500

8 1200 2200 1700

9 1400 2400 1900

10 1600 2600 2100
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which tightly affect high-density EEG recordings (Vinck

et al., 2011; Gordon et al., 2013).

Formally, let Z and iZ are respectively the real and

imaginary parts of the cross-spectrum of two EEG

signals x and y. The Weighted Phase-Lag Index can be

defined as:

WPLIðx; yÞ ¼ jEfiZgj
EfjiZjg

where E is the expected value and j � j is the absolute

value function. The inequality 0 6 WPLIðx; yÞ 6 1 holds

for each couple of signals x and y and WPLIðx; yÞ ¼ 1 if

x and y are maximally synchronized while WPLIðx; yÞ ¼ 0

when there is no synchronization at all. A functional

connectivity graph is represented by an adjacency matrix

A obtained by computing Aði; jÞ ¼ WPLIði; jÞ for each ði; jÞ
couple of EEG electrodes (i; j 2 f1; � � � ; 128g). Eventually,
graph edges have been filtered in accordance to the

procedure present in a recent work (Dimitriadis et al.,

2017). Specifically, 1000 surrogate signals are generated

by the Amplitude Adjusted Fourier Transform (AAFT) in

order to statistically challenge each graph weight by

selecting those that for less than 50 times (out of 1000)

were greater in comparison with their correspondent

weights computed on the surrogated signal. Additionally,

the False Discovery Rate (FDR) criterion furtherly pruned

false-positive weights. Because, weighted graphs still

remain densely connected a feature hardly matching the

structural brain network topology (Rubinov and Sporns,

2011), we used a topological filtering heuristic to prune

the connections not fulfilling two of the most important

topological principles of brain network: wiring cost opti-

mization and transmission efficiency. We used the already

optimized implementation of this algorithm presented in

(Dimitriadis et al., 2017).
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Network analysis and comparison

Extracted networks were analyzed by the set of complex

network statistics reported in Appendix. Functional

segregation and integration (Tononi et al., 1994) were

estimated respectively by the clustering coefficient (C)

and the characteristic path length (L) using the MATLAB

implementation provided by the Brain Connectivity
Please cite this article in press as: Zippo AG et al. Alternating Dynamics of Segregation and Integration in Human E
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Toolbox (BCT) and by other routines developed in our

lab (Rubinov and Sporns, 2010).

Some complex network procedures (small-worldness
and the modularity parameters) required the generation

of null networks obtaining either randomization or

latticization ensuring however that the node degree

distributions of the original graphs were preserved.

Randomizations were also weight-distribution

conservative as implemented in the Matlab routines

null_model_und_sign.m and latmio_und_connected.m.

The information workflow among node has been

furtherly investigated in the extracted functional

networks by a couple of network centrality measures:

the betweenness and the eigenvector (Borgatti, 2005;

Gould, 2016).

We further studied the community structure of our

graphs. Instead of using specific modularity algorithms

that find coherent node partitions over time slides, we

used the Louvain’s algorithm to find the best estimation

of the modularity index for each time window in each

trial in order to evaluate consistent temporal dynamics

(community_louvain.m). The multi-resolution parameter

of Louvain’s algorithm (c), which reduce the well-known

tendency of such algorithms to prefer clusters of big

size (Lefebvre et al., 2008), has been tweaked for each

network by comparison with the randomized version of

the same network.

Ultimately, we preferred network analyses on the

original weighted version of graphs instead of using

binarization techniques for several reasons:

1. unconnected nodes can occur after matrices binariza-

tion by thresholding

2. networks varying in size require difficult statistical

analyses

3. graph thresholding produces noise reduction but inevi-

tably loss of information

4. the functional connectivity measure (WPLI) has also

been proposed to enrich the reduced dynamic range

conveyed by its previous version (the PLI) especially

for weak interactions (Vinck et al., 2011), the selective

removal of weights reduces the WPLI statistical power

5. network thresholding produces a considerable incre-

ment of the computational time because different

threshold values should be evaluated (see Discussion)

6. all used network statistics have a weighted counterpart

(Rubinov and Sporns, 2011)

Computational network models

To investigate the leading factors of the observed

topological dynamics we built simulation framework to

study the information flow within artificial network

models. Thus, we generated two groups of network

models, the first containing two network models with

brain-like topologies; the second containing two null

models. In particular, we produced small-word and core-

periphery networks by means of the Watts–Strogatz

(WS) and the Barabasi–Albert (BA) models (van den

Heuvel et al., 2008). Complementarily, Erd}os–Renyi
(ER) and the ring-lattice (RL) models represented the

completely random and the entirely deterministic
EG Functional Networks During Working-memory Task. Neuroscience (2017), https://doi.org/10.1016/j.
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networks. It does not affect the generality of the hypothe-

sis to assume that, for simplicity, synthetic graphs are

generated in unweighted form and network statistics used

were thus the unweighted versions of those in Appendix.

The information flow within networks was simulated

according to the notion of edge betweenness centrality

(EBC) which assigns at each edge a centrality score as

in betweenness centrality (BC) (Gould, 2016), namely

by counting the number of times each edge is involved

in the shortest paths between all node couples. For this

analysis, we used unweighted simulated networks,

namely, the unweighted form of the EBC has been esti-

mated. WS networks were generated with an edge recon-

nection probability of 0.1.

Although the alternating dynamics observed in the

EEG data was constrained in 10 time windows, the core

dynamic was deployed and completed in two phases,

allowing for dichotomizing the time of flow in two

segments within which we expected to observe the

alternating dynamics.

From an edge-centric perspective, to simulate the

network information flow within the two time halves we

computed the rank statistics of the EBC edge distribution

which allowed us to part the edges recruited in the first

from those in the second phase. Since we could not

assume a priori the number of activated edges in each

phase, we inspected all the possible combinations with

the resolution of one percentile. Therefore, we computed

and collected both functional graphs for each of the 100

percentiles that served as leverage points along the EBC

distribution. Essentially, by keeping a certain set of

activated edges in the first phase we labeled and

assigned them to the same functional graph in the first-

time half. The complementary set of edges not activated

in phase 1 fell in the second-time half generating a

second functional graph. For both functional graphs, we

computed values of functional integration (L) and

segregation (C) and 3of the 4 network models were

exerted 100 times to evaluate the role of randomness

with the obvious exception of the purely deterministic RL

model. As a rule, for each generated network we

computed the same network statistics (C and L) of the

entire graph (all edges together) to track the magnitude

of functional evoked modifications because this activated

network represented the structural substrate of the

evoked functional graphs.

In addition, to elude possible effects of the network

dimension, we investigated such dynamics for variable

network sizes spanning 6 dyadic scales (2
5
to 2

10
, where

higher scales were prohibitively costly in terms of

computational time) and for each network model. The

entire computational framework is freely available (https://

sites.google.com/site/antoniogiulianozippo/codes), and it

is able to reproduce data and figures.
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Statistical tests

In this study, different types of statistical hypothesis tests

have been adopted. To assess the significance of an

estimated Pearson’s correlation coefficient between two

network statistics, we collated in group #1 the values of
Please cite this article in press as: Zippo AG et al. Alternating Dynamics of Segregation and Integration in Human E
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all network statistics #1 for all subjects and for group #2

the values of all network statistics #2 for all subjects.

Specifically, we used the permutation test by performing

10,000 permutations in each of the two groups, and

evaluating the number of times (out of 10,000) the

computed correlation was greater than or equal to that

computed on the original dataset. Whether the number

of times was smaller than 500 (equivalent to get

P < 0.05, 10,000/500) the null hypothesis was rejected.

When we had to assess if two samples came from

different distributions by selecting the non-parametric

two-paired Wilcoxon ranksum test. To assess the

statistical significance of time-varying network statistics

within 10 sliding windows of each trial, the Friedman

non-parametric test was chosen and with the Kendall’s

coefficient of concordance (W) to normalize the

Friedman statistics in [0,1]. We preferred non-parametric

tests because we had no confidence about the normal

distribution of the samples. Eventually, in comparing two

distributions the generalized Kolmogorov–Smirnov test

has been used. Within the Results section, ‘‘P” indicates

the level of significance and ‘‘N” indicates the sample

dimensions. Statistical quantities are reported by using

three decimal digits.
RESULTS

Functional network features

We investigated the dynamics of brain functional

networks in simple WM tasks by high-density

electroencephalographic recordings in young healthy

adults. The WM is responsible for the storage and

maintenance enabling integration of higher order

information (Oberauer and Suss, 2000; Baddeley and

Wilson, 2002; Pessoa et al., 2002; Baddeley, 2003;

Oberauer, 2003). WM capacity is expressed through a

high level of stability across different cognitive functions,

thus relying upon the organization and interaction of mul-

tiple brain regions ruled by dynamic changes in cognitive

control systems (Jaeggi et al., 2003; Owen et al., 2005).

In this study, we were interested in unraveling short-

term dynamics, in terms of brain functional connectivity

features, while subjects performed the n-back tasks,

and to trace the information flow within WM functional

networks. In the n-back task, participants are required to

monitor a stream of visual stimuli (colored squared

boxes), presented one at a time. The tasks are to

indicate whether the currently displayed item is identical

as the one presented n trials previously. The memory

demands grow as n increases. In the present study, n
was set at 1 or 2.

We recorded ten minutes of ongoing (resting) activity

before the beginning of the cognitive task and six

sequences of 41 trials (i.e. 3 sequences of 1-back and 3

sequences of 2-back). Visual patterns appeared on the

screen for 0.5 s at 3 s intervals. In order to study the

non-stationarity, we split each recorded trial into

10 sliding time windows, 1 s for each, with sliding steps

of 200 ms (see Materials and Methods and Table 1). To

extract the functional connections among the 128
EG Functional Networks During Working-memory Task. Neuroscience (2017), https://doi.org/10.1016/j.
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electrodes, we used the weighted phase-lag index (WPLI,

(Vinck et al., 2011; Ortiz et al., 2012)) thus minimizing the

effects of volume conduction that strongly affects EEG

recordings. The beta and low gamma frequency bands

[12–45] Hz has been selected where we found conspicu-

ous transients of evoked potentials along the temporal,

frontal and parietal cortical areas (Fig. 1E,F).

We analyzed the functional connectivity graphs,

statistically and topologically supported by

complementary analyses, with a set of common network

statistics. The extent of functional segregation was

estimated by means of two graph-related measures,

namely the clustering coefficient (C) and the functional

integration through the characteristic path length

(L, (Tononi et al., 1998; Rubinov and Sporns, 2010). To

investigate the behavior of functional segregation and

integration in different experimental conditions we col-

lected network statistics from all recording windows and

proceeded with analyses and inferences (Fig. 1A–D

reports the analytic approach). The columns of Table 2

summarize the basic network statistics for functional con-

nectivity graphs obtained in 3 different conditions: resting

state, 1-back and 2-back tasks. Specifically, we found a

tight general correlation between C and L (R = 0.8651,

P = 3.451e-12, permutation test, N = 33,600). Subse-

quently we analyzed C and L in the different experimental

conditions and we found that the cognitive task (combin-

ing 1- and 2-back, ‘‘Overall Trials” in Table 2) produced

an increment of C (P = 0.001, N= 33,600, non-

parametric Wilcoxon ranksum test) and a decrement of

L (P = 0.006, N= 33,600, ranksum test). Furthermore,

C values in 1-back trials were smaller than C in 2-back

trials (P = 6.9702e-56, N= 33,600, ranksum test) and

L values in 1-back trials were greater than in L in 2-back

trials (P = 8.630e-37, N = 33,600, ranksum test). These

analyses evidenced that the cognitive tasks produced sig-

nificant changes in the functional network dynamics and

that the task difficulty was proportional to the extent of

functional segregation and integration.
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Dynamics of functional segregation and integration

We proceeded investigating the dynamics of functional

segregation and integration within the time windows. By

averaging the functional graph statistics on all trials for

each subject (see Fig. 2A–F), we found a specific trend

within each n-back trial. In particular, between 300 and

700 ms (time windows 2, 3, 4) after the presentation of

the visual pattern, the C value (measure of functional

segregation) reached its peak then decreasing between

1300 and 1700 ms (time windows 6, 7, 8). Conversely in

this same period L reached its minimum (indicating,
Table 2. Functional brain network general statistics (mean value, standard de

Functional

network

Average node

strength

Average edge

weight

Clustering

coefficient (C)

Resting State 61.468,11.212 0.480,0.271 0.394,0.069

Overall Trials 63.511,11.88 0.492,0.288 0.398,0.116

1-back 64.446,12.201 0.483,0.273 0.389,0.094

2-back 62.577,11.485 0.477,0.285 0.411,0.076

Please cite this article in press as: Zippo AG et al. Alternating Dynamics of Segregation and Integration in Human E

neuroscience.2017.12.004
being an inverse measure of integration, namely a peak

of functional integration). Statistical tests (Friedman)

showed that C and L variations were significant both

considering all trials (C: P = 9.533e-5, L: P= 6.080e-

13, N= 51,660) and separately, the 1-back trials

(C: P = 1.999e-34, L: P = 2.685e-31, N = 25,830) and

the 2-back trials (C: P = 3.101e-40, L: P = 4.319e-90,

N= 25,830). Times of maxima and minima were

slightly variable among subjects. Again, in all trials C

and L were tightly correlated (R= 0.895, P = 0.006,

permutation test). Taking into account the C and L

minima and maxima in 1-back and 2-back conditions,

we found that C maxima were larger (P = 2.417e-26,

N= 5166, ranksum test) and C minima were smaller

(P = 0.001, N = 5166, ranksum test) in 2-back than in

1-back trials. Complementarily, L maxima were larger

(P = 1.602e-44, N= 5166, ranksum test) and L minima

were larger (P = 0.007, N= 5166, ranksum test) in

1-back trials. Equivalently, widths of C maximal

oscillations were greater in 2-back than in 1-back while

widths of L maximal oscillations were greater in 1-back.

To rule out an influenced by functional connectivity

modulations, we further analyzed the dynamics of the

WPLI synchronization index during the task execution

exploring potential correlations with the network

statistics above. We noted no significant variations of

the average synchronization index along time windows

(P = 0.810, N= 33,600, W = 0.853, Friedman test).

Consequently, C and L values were not correlated to

the average WPLI values (C: R= 0.096, P = 0.002, L:

R= 0.084, P = 0.001, permutation tests, N= 33,600).

Altogether these results indicate that the architecture

of functional connectivity graphs switched between two

specific states, more segregated in the first phase

supervened by integration in the second. Secondarily,

the results show that greater cognitive loads, as in 2-

back compared with 1-back, made networks more

integrated and more segregated. Finally, the observed

effects were not due to modulations of the WPLI

synchronization index.

Occasionally, though the percentage of correctly

completed trials was high (�92% on average),

participants got wrong answers to trials. In these cases,

the C average distribution strongly differed from that

obtained in the correct trials (P = 6.154e-4, N = 10,

Kolmogorov–Smirnov test), where the C variations

within the task were not significant (P = 0.785, N =

5682, W= 0.643, Friedman test). Similarly, the L

average distribution was different (P = 3.894, N = 10,

Kolmogorov–Smirnov test) and L variations were not

significant (P = 0.720, N = 5682, W = 0.613, Friedman

test). Results are shown in Fig. 2G,H. By analyzing the
viation). All networks had 128 nodes

Characteristic path

length (L)

Small-

worldness (S)

Small-

worldness (x)

0.081,0.021 2.12,0.56 0.09,0.05

0.062,0.013 2.34,0.78 0.07,0.03

0.069,0.019 2.29,0.76 0.06,0.02

0.057,0.010 2.40,0.81 0.07,0.03
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Fig. 2. Dynamics of network statistics during the cognitive task. Plots are obtained averaging all cognitive task trials and all participants. (A,B)

Figures clearly indicate a first phase spanning time windows from 2 to 4 (and from 6 to 8) where C and L values reached the maximum (minimum).

The figures in (C,D) represent same statistics computed by considering only 1-back trials and in (E,F) only 2-back trials. (G,H) Trends obtained

averaging all error trials in all participants. Data analyses revealed two clusters for C and L trends. (I–L) Cluster n.1 where the clustering coefficient

variations were not statistical significant within the wrong trials as well as the characteristic path length. In the second cluster (M,N) instead showed

a significant modulation of the network statistics within the trials but the C and L maxima were got around the seventh time window. All plots are

generated by the ‘‘DistributionChart” function of Wolfram Mathematica �.
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C and L behaviors in error trials, we isolated two common

trends depicted in Fig. 2I-N. In the first kind of trend

(Fig. 2I–L) no modulation of C or L appeared while in

the second one (Fig. 2M,N) a significant modulation

occurred only in the time windows 6–9. These results

indicate that, when participants got wrong answers, the

corresponding functional connectivity networks did not

correctly modulate integration and segregation during

those trials. Notably, in the presence of delayed

modulations (increments of C or L), there were

associated wrong trials. Essentially, we deduced that

the first 4–5 time windows correspond to the convenient

interval where the first stage of network modifications

(increases of functional segregation or decreases of

functional integration) must to occur under penalty of a

wrong trial.
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Network centrality and modularity during WM trials

In a second stage, we aimed to characterize functional

connectivity graphs with more complex network

statistics (centrality and modularity) able to highlight the

information flow dynamics within networks. Typically,

this requires measures that estimate the importance of

nodes in the network information routing usually

addressed by specialized network measures (centrality)

of two types: those that use only information of
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neighbors (local centrality) and those that instead use

information from the entire network (global centrality).

Among the local centrality measures we preferred

the node degree centrality, a quantitative measure of

the number of node connections, whereas, for the

measures of global centrality, we chose the

betweenness (BC) and the eigenvector centralities (EC)

(Borgatti, 2005; Gould, 2016). The former measures the

number of times a node is bridging neighboring or far

nodes. The latter assigns a greater centrality to a

preeminent node (a richly connected node) than to a

poorly connected one. We found that the average node

degree was correlated with both C (R= 0.629,

P = 2.211e-54, N = 51,660, permutation test) and L

(R = 0.538, P = 8.404e-30, N= 51,660, permutation

test), and that it was modulated during task trials

(P = 0.001, N= 51,660, Friedman test). Conversely,

the centrality measures appeared to be invariant during

task trials (BC: P = 0.999, W= 0.913, EC: P = 0.981,

W = 0.912, N = 51,660, Friedman tests, Fig. 3A,B). This

last result induced us to further investigate the role of cen-

trality in such brain functional networks by analyzing the

distribution of the centrality measures irrespective of the

trial time windows. We found that BC and EC showed

heavy-tailed distributions (Fig. 3C). The degree centrality

on the contrary appeared normally distributed with a slight

positive skewness (0.12). These results suggested that
EG Functional Networks During Working-memory Task. Neuroscience (2017), https://doi.org/10.1016/j.
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Fig. 3. Centrality and Modularity in brain functional networks. Trends of betweenness (A) and of eigenvector (B) centralities obtained averaging all

cognitive task trials and all participants. (C) Distributions of betweenness and eigenvector centralities have heavy-tailed distributions while degree

centrality has a Gaussian-like shape. (D) Estimated modularity index, computed considering all trials, where is visible a straightforward dynamical

effect not, however, statistical significant. (E) The modularity obtained considering only trials in which participants did correct answers, gave

significant effects, with peaks of Q in time windows 2–4 and minima of Q in windows 6–8. For this reason, Q was tightly correlated with C and L. (F)

Wrong trials showed no significant modulations of the modularity index. (G) The modification of the number of communities within task trials was

significant: when in functional networks prevailed on the functional segregation (Fig. 2), the number of communities increased of 20–30%. (H)

Example of community dynamics where the left column plots represent network configurations in the time window 3 and right column plots of time

window 7 of a representative trial. Plots in A-B and D-G are generated by the ‘‘DistributionChart” function of Wolfram Mathematica �.
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node loads were inhomogeneously distributed among

nodes identifying groups of nodes that likely process a

much higher amount of information than other ones. In

conclusion, global centrality appears to be an important

indicator of the node role during the n-back cognitive task

because it identifies a stable node configuration during

task completion.

Since, other important aspects of complex network

dynamics can be hidden in the brain modularity

structure, we subsequently performed a network

modularity analysis. As a rule, nodes of networks can

be clustered into groups (communities or modules) in

order to maximize the number of edges within each

community and to minimize the number of

intercommunity edges (Freeman, 1977). The modularity

index Q represents the goodness of the proposed parti-

tion and takes values within [0,1]. The modularity was cor-

related (R= 0.838, P = 2.231e-98, N = 55,166,

permutation test) with the clustering coefficient indicating

that the modularity increased during peaks of functional

segregation and, vice versa, it declined during peaks of

functional integration (R = 0.889, P = 0.008,
Please cite this article in press as: Zippo AG et al. Alternating Dynamics of Segregation and Integration in Human E
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N= 55,166, permutation test). Furthermore, we found

that the modularity did not significantly changed during

the task trials (P = 0.410, N = 51,660, W = 0.422,

Friedman test, Fig. 3D) but when correct trials were

extracted, modularity modulations became significant

(P = 0.018, N = 47,683, W= 0.130, Friedman test,

Fig. 3E). Differently, this did not happen in wrong trials

(P = 0.917, N= 3977, W= 0.971, Friedman test,

Fig. 3F). Communities represent also a coarse-grain

measure of the network information segregation, coupled

to the clustering coefficient. Thus, by analyzing the num-

ber of communities in task trials, we found that the num-

ber of communities was significantly modulated (P =

0.007, N= 51,660, W = 0.133, Friedman test, Fig. 3G)

showing a positive slope (�+20%) in the time windows

2, 3 and 4. This fact suggested that when networks were

in functional segregation modality, they had more mod-

ules whereas functional integration did not require specific

adjustments of the community cardinalities.

In Fig. 3H, network node colors express the

membership to community and in the first column (left)

appear the communities in the time window 3 and in the
EG Functional Networks During Working-memory Task. Neuroscience (2017), https://doi.org/10.1016/j.
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‘‘Phase 1” characterized by a functional segregation prevalence. (B)

Hypothesized ‘‘Phase 2” characterized by a functional integration

dominance. Both configurations were generated by the simulator that

used small-world networks with 64 nodes.
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second column (right) the communities of time window 7.

Figures highlight that in earliest network configurations

dominated by functional segregation preeminence, there

are more communities than in the later ones where

functional integration prevails. Therefore, modularity

changed observing a comparable scheme to that found

with a finer-grain measure of segregation (C).

Computational inspections

In the last stage, we tried to figure out the possible factors

which enliven the alternating behavior of segregation and

integration, the working hypothesis of this section.

Therefore, we conjectured that some of the information

processing in human brain networks could be mirrored

in the observed alternating dynamics.

Hence, we developed a computational model which

simulated the information flow within brain networks in

comparable conditions, in order to replicate the

topological dynamics observed in experimental data.

Connectomics studies described the human brain as a

small-world network with a strong core-periphery and

scale-free organization (Newman, 2006). The core-

periphery feature identifies bipartite networks with a parti-

tion characterized by densely interconnected nodes with

high centrality, and a complementary partition with spar-

sely interconnected and (usually) non-central nodes.

Accordingly to these facts, since functional brain networks

have both a small-world and a core-periphery organiza-

tion (see Table 2 and Results sections), we challenged

the working hypothesis against 4 network models: two

of them coherent with brain network topologies, namely

the Watts–Strogatz model (WS), able to generate small-

world networks and the Barabasi–Albert model (BA), able

to generate (scale-free) core-periphery networks(van den

Heuvel et al., 2008), while on the other hand, 2 null net-

works, the Erd}os–Renyi (ER) and the ring-lattice (RL)

models, respectively a network where edges are com-

pletely randomly assigned and, conversely, a network

with a purely deterministic allocation of edges.

Since the analysis of edge activations is easier from a

functional perspective, network dynamics were

conveniently analyzed from an edge-centric rather than

a node-centric perspective following an approach similar

to works of Grady et al. (Senden et al., 2014) and Ekman

et al. (Ekman et al., 2012; Grady et al., 2012). Therefore,

we directly focused on the aroused functional connections

by analyzing a wide range of different activation levels.

Essentially, rather than recruiting node-consequent

edges, we directly collected edge activities by specific cri-

teria. Namely, we divided the temporal horizon of the

events in two succeeding functional phases contriving a

condition for the elicitation of the edges. At first, each

model network was exerted 100 times to reduce the ran-

dom effects. In the first trial, the algorithm parted edges

such that where EBC was smaller or equal to its first dis-

tribution percentile it belonged to the first group, the rest

of edges to the second group. Similarly, in the second

step the algorithm classified by leveraging at the second

percentile and so forth until the last percentile. We inves-

tigated such dynamics for a variable size spanning 6 dya-

dic scales (25 to 210) and for each network model (higher
Please cite this article in press as: Zippo AG et al. Alternating Dynamics of Segregation and Integration in Human E
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scales were prohibitively costly in terms of computational

time). Therefore, for each generated network we com-

puted the network statistics (C and L) to track the evolu-

tion of the functional evoked network modifications.

Results from simulations were subsequently filtered to

discard singularity cases where C or L were equal to 0

and to select the regions, in terms of network size and

leverage range, where the hypothesis was satisfied. We

called such regions as admissible meaning that if such

a network elicited first a certain percentage (leverage

point) of edges (functional graph of stage 1) then it

would have also elicited the rest of the edges (functional

graph of stage 2), we verified our hypothesis (Fig. 4).

We found that the WS and BA models produced

relevant sets of admissible regions (see Fig. 5A0–D0),
namely intervals of the edge leverage that verified the

working hypothesis. Such regions rose with the network

size in case of WS networks and shifted towards higher

leverage points for BA networks. Importantly also ER
EG Functional Networks During Working-memory Task. Neuroscience (2017), https://doi.org/10.1016/j.
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models reported a considerable range of admissible

regions indicating that purely random networks can be

in accordance with the experimental results. In contrast,

RL networks generated a quasi-empty set of admissible

regions and did not support the proposed hypothesis.

Specifically, in the WS model, when network size grew

(greater or equal to 128 nodes) edge leverages nearby or

greater to 10% satisfied the working hypothesis. The BA

model instead was compatible with leverages in the

range from �40% to 60–65% for network of size greater

or equal to 64 nodes except for the case with 1024

node wherein the admissible leverages were those from

70% or higher. The ER model was compatible in a

double interval of admissible regions that were [�20%,

�40%] and [�60%, �80%] (for network of sizes 32, 64,

128, 256), the second interval shifting to higher values

according to the increasing network size. Networks of

size 512 or 1024 had a single admissible region that

was [40–50%, 100%]. At last, the RL model was only

compatible with a very narrow range of regions and for

few network sizes.

By considering the functional changes provoked by

the imposed dynamics in comparison to the structural

substrate, we noted that in the WS, BA and ER models

the Phase 1 and Phase 2 networks largely differed from

the original network (green points and excluding C and

L values equal to 0), a phenomenon not observed in the

RL model. A more representative example where the

phenomenon is easily appreciable can be found in the

movie Movie 1 built with the C dynamics of a synthetic

SWN with 128 nodes.
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Movie 1. The movie shows a network flow, in terms of functional

connection graphs, simulated by a small-world network with 128

nodes tracking the evolution of the clustering coefficient (C).

Remarkably, it is evident the oscillation behavior of C that

because it was tightly correlated with L visually demonstrate that

such networks underwent to two topologically and orthogonal

phase likely supporting the information processing demand.
The evidence collected at this stage suggests a stable

computational scheme for the information processing

within the functional brain organization where each

computation might be decomposed in sequences of

two atomic and alternating steps (segregation and

integration).
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DISCUSSION

In this work we investigated by EEG in healthy volunteers

the global brain connectivity events during a working-

memory task. We found that the temporal evolution of

the involved brain network architecture follows steadily a

general simple 2-step scheme wherein a surge of

functional segregation flows into integration throughout

the elaboration of a working-memory task. This

mechanism could represent an elementary paradigm

orchestrating the brain information processing in small-

world networks and, hence, in effectual brain functional

dynamics. To confirm this, error trials diverged from this

rule.
Previous works

In these last years the study of temporal networks,

namely functional networks changing their architectures

in time, has progressively encompassed a widening

range of disciplines. Temporal networks play an obvious

critical role in the studies on brain network dynamics

(Lefebvre et al., 2008; Chu et al., 2012; Hutchison et al.,

2013b; Sporns, 2013a; Allen et al., 2014). Important

papers have forerun crucial issues on brain circuits inter-

preted as temporal networks. Namely, Betzel et al. stud-

ied the repertoire of distinct states encountered by brain

functional networks in EEG resting activity observing a

limited set of strongly recurrent network states (Betzel

et al., 2012) resembling the EEG microstates (fast and

transient electrical configurations on the scalp) described

elsewhere (Van de Ville et al., 2010). In accordance with

these results, we propose here a dynamic network model

capturing the early stages of a cognitive task in two con-

nectivity states with inherent recurrences. In accordance

with our results, it has been recently reported that during

different types of tasks, networks showed higher degrees

of integration (Crossley et al., 2013). In contrast, Kitzbich-

ler and colleagues recently reported that global and local

efficiencies of functional brain networks showed stable

patterns during n-back tasks (Kitzbichler et al., 2011)

and this mismatch might be ascribed to problems inherent

to distortions induced by volume conductions, potentially

injecting masking effects over putative neural sources.
Brain network physiology

Besides these dynamic variables, our results indicate also

that a hierarchical information processing could be nested

into the alternating segregation and integration couples

observed in trials of a working-memory task. Namely,

the differences observed between 1-back and 2-back

trials in terms of segregation (C) may be ascribed to the

fact that a 1-back trial recruits mainly attentional

processes in order to confront two successive trials,

while a 2-back trial entails both attentional and control

processes. The former would emerge in order to

process the stream of stimuli, the latter to monitor

intervening items and inhibit competing responses

allowing the successive integration of the information for

correct response selection.
EG Functional Networks During Working-memory Task. Neuroscience (2017), https://doi.org/10.1016/j.
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Fig. 5. Network statistics of the network models for sizes ranging from 32 to 1024 in dyadic scales. Analyzed models were: the Watts–Strogatz (A),

the Barabasi–Albert (B), the Erd}os–Renyi (C) and the ring lattice (D). The first row of each subfigure indicates the Clustering Coefficient while the

second one the Characteristic Path Length. Besides, subfigures A0–D0 represent the related admissible regions respectively computed for each

model. More plausible models are the Watts–Strogatz and the Barabasi–Albert even though the Erd}os–Renyi shows a good consistence with our

hypothesis despite its much lower plausibility as brain topology.
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Segregation may constitute the groundings of the first

stages of cognitive processing in 2-back trials when (1) a

greater quantity of information needs to be held on-line in

order to effectively fulfill the task goals and (2) potential

sources of noise (i.e. internal or external) need to be

hindered to avoid interference with task-relevant

information, thus setting the premises for functional

integration between salient processing elements.

Furthermore, a 2-back trial taxes cognitive processing in

terms of WM load to a higher degree, which seems to

translate in an increase in segregation but also modular

consistency across participants in WM processes

(Pessoa et al., 2002). Modularity is a distinctive property

of a complex and efficient biological system, which tends

to establish only sparse connections between sub-

networks in order to scale down the propagation of noise

in the system granting integration of information for

demanding tasks.

According to our results, WM can be theorized as a

modular system requiring high levels of segregation in

the first stages of cognitive processing both to maintain

salient information no longer available and to halt

interference from internal or external noise generated by

competing targets. Segregation is then followed by

integration in order to share and efficaciously tailor

information to the specific task objectives. Wrong trials,

where participants failed to get correct answers, showed

very divergent network dynamics. Our synthetic network

models built with the nomological scaffold as from

natural data supported the prospected theory.

Essentially, our results suggest that brain networks

observed in the functional substrates emerge as

recurrent dynamics figures virtually observable at

diverse spatial and temporal scales in agreement with

the findings that many brain physiology episodes are

scale-free (Ekman et al., 2012). The faulty ‘‘integration-s

egregation” scheme in wrong trials might lead to wonder

how much many brain diseases associated to cognitive

impairments could harbor interfering mechanisms or exhi-

bit weakened local dynamics to generate sound state

cycling. This would also suggest that functional networks

might also represent a powerful tool to discriminate nor-

mal conditions from a large repertoire of diseases.

This suggestive two-step figure doesn’t appear a

standout in the physiology of living systems offering

many examples of binary discrete phases such as

diastoles and systoles for the hearth, air inhalations and

exhalations for the lung, relaxations and contractions for

the gastrointestinal peristalsis, etc. Hence, segregations

and integrations for brain functional networks should not

appear a remote concept nor an exceedingly reductive

mechanism yet compared with the huge repertoire of

states expressible by the human brain.

Theoretical significance

From the last section we concluded that network models,

where nodes have a heavy-tailed distribution, were

potentially consistent with our empirical observations

from EEG activity. We further propose that these

centrality distributions suggest a hierarchical processing

likely divided in three layers.
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A part of the experimental results showed invariances

of global centralities within task trials, an important factor

in the present study (Figs. 6 and 7). By taking into account

that the BC in the synthetic network models used in the

previous section have a similar heavy-tailed shape

(Fig. 8A, except for RL) of those observed in EEG

functional networks (Fig. 8B, for a wide range of

binarization thresholds), we assumed that BC could

predict the network node roles thus representing a sort

of estimator of the structural-to-functional network

mapping (Goh et al., 2001; Ekman et al., 2012; Vlachos

et al., 2012; Kumar et al., 2013; Zippo et al., 2013a,b).

Accordingly, we propose an accompanying toy

network model, where nodes with low BC represent the

periphery of the network and nodes with highest BC

represent the core of the network, arguing that these

classifications could capture the essence of the

alternating phenomenon. Specifically, the toy network

has a 3-layer hierarchical layout by partitioning the BC

values in three arbitrary classes suggested by the BC

distribution shape (see Fig. 8C), with edges oriented

from periphery to core (Fig. 8D,E). In the ideal

information flow within the toy network, a relevant part

of the peripheral nodes (in layer I) are activated, then

triggering a sparse activation of other layer I nodes and

of a downsized number of layer II nodes. Subsequently,

activated layer II nodes similarly provoke activations of

layer III nodes. Collectively, the hierarchical dynamics

might be inherently reduced to two stages: activations

from layer I to layer II and activations from layer II to

layer III (see Fig. 8F,G). In this toy network, the

functional connectivity graph of each stage is acquired

by inspection of the activated edges in the current stage

(violet edges in Fig. 8F,G). Intuitively, in the first stage

the functional segregation strongly prevails on functional

integration because modules activate their inner

connections but remain mutually isolated (Fig. 8F).

Conversely, in the second stage, the functional

integration dominates because, although fewer modules

are active (being now first layer modules, the most

conspicuous, inactive), they have gone tightly connected

together.

Simulation interpretations

Several synthetic network models could produce the

functional dynamics observed in our experiments. The

simulation endorsed the possibility that the mechanisms

observed in EEG sessions are due to the inherent

topological brain organization which displays specialized

modules able to convey processed information in fast

communicating central modules of interconnected hubs.

Simulated networks preferred an edge-centric

perspective of the network dynamics because classical

studies of neuronal network dynamics which use node

behaviors (e.g. integrate and fire, Izhikevich, Hodgkin–

Huxley models) are dramatically affected by the choice

of model and parameters.

Although we hypothesized and verified that small-

world and core-periphery networks were consistent with

experimental data, we unexpectedly found that also

random networks could support the observed
EG Functional Networks During Working-memory Task. Neuroscience (2017), https://doi.org/10.1016/j.
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Fig. 6. Betweenness centrality distribution over the EEG electrodes. Instance of the 2-back trial

depicted in the BESA sphere space where nodes correspond to the EEG electrodes (128) and

numbers (1–10) correspond to the time windows. Values are averaged on all trials and subjects.

Node sizes are constant and node colors indicate the level of betweenness centrality.

Fig. 7. Instance of the 2-back trial depicted in the BESA sphere space where nodes correspond to

the EEG electrodes (128) and numbers (1–10) correspond to the time windows. Node diameters

are proportional to the node degree distribution and node colors indicate the level of betweenness

centrality (low ? network periphery, high ?middle, extremely high ? network center). To note

that smaller nodes mean smaller node degree and, since they were tightly correlated, smaller L. In

particular, the figure shows how networks evolved during a representative single trial where the

node size is proportional to the node degree and the node color is referred to the BC class (red for

the class (iii), green for the class (ii) and blue for the class (i)). The windows 2, 3 and 4 highlight

core activations (with nodes that switch to red and become larger) of the parietal electrodes likely

recording the dorsal stream activity emergent during visual guided tasks [1,2]. This appears to

represent the phase of functional segregation dominance. Subsequently, they become progres-

sively smaller and smaller in the next windows 5, 6, 7 as potential sign of the incoming integrative

processes. (Above) Axial view, (Middle) Coronal view, (Below) Sagittal view. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)
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topological phenomena. Indeed,

although brain networks are far from

being random, random networks

have a heavy-tailed distribution of

the node (or edge) centrality and we

identified this property as the main

cause for the detected topological

phenomenon.

The gedanken experiment further
suggested that the observed 2-step

frame could be the result of a stable

hierarchical information processing

layout, organized in three layers,

periphery, median and core nodes,

in networks with a modules-and-

hubs organization. Such an

organization suggests a specific

computational workflow where

parallel computations in segregated

modules (with low centrality) spread

activity to the second layer of the

hierarchy (segregation stage). The

activated second layer nodes (hubs)

inject the obtained computed

information into the last most central

nodes, which reside in the third

hierarchy layer (integration stage).

Although the hierarchical layout in

our network model based on the

node centrality was postulated, the

brain hierarchical organization and

the hierarchical information

processing in neural circuits have

been largely reported. Although the

bottom-up hierarchical layout in our

network model based on the node

centrality was postulated, the brain

hierarchical organization and the

hierarchical information processing

in neural circuits have been largely

reported (Riesenhuber and Poggio,

1999; Meunier et al., 2010; Zippo

et al., 2013a,b).

Limitations and conclusions

A note has to be spent on earlier

events that may generate, modulate

or influence the double step of

segregation and integration in these

memory tasks. Precocious signs of

segregation are detectable at 300

ms from the start of the task and

flourish throughout the time window

up to 700 ms. Timings appear

consistently overlapping with P300

waves, at least with later component

of P300, the so called the P3b

associated to information processing
rking-memory Task. Neuroscience (2017), https://doi.org/10.1016/j.
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(Squires et al., 1975). How much these multifarious com-

ponents may contribute to the complex and late events of

segregation and integration remains to be elucidated. As

well, it remains unanswered which potential roles that pre-

cursor episodes of task error detection such as the error

related negativity (Ne or ERN) and positivity (Pe), a cou-

ple of error monitoring processes, may have in interfering

with the ensuing correct development of high cognitive-

related processing of memorization (Falkenstein et al.,

1991; Gehring et al., 1993). In the presence of Ne and

Pe there could be generated destructive conditions lead-
Please cite this article in press as: Zippo AG et al. Alternating Dynamics of Segregation and Integration in Human EEG Functional Networks During Wo
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ing to the abortion of the memoriza-

tion processing. This is particularly

important when considering that late

P300 (a cognitive decisional ERP

label) and Pe waves may represent

a complex but partially overlapped

neural processing with only slight

temporal shifts (where Pe is present).

In summary, it still remains to be clar-

ified if in the presence of early errors,

such as an incorrect motor planning,

this may then drive a downstream

deconstruction of the complex duet

of segregation-integration and its

behavioral counterpart related to

memorization. Eventually, further

studies are necessary to investigate

the relations with the brain structural

substrate. Unfortunately, no anatomi-

cal inference was possible with the

available experimental setup.

In conclusion, the results in this

study support the idea that, facing

space–time limited context tasks, the

human brain functional networks

may work in accordance with two-

step rules. Such rules could, further,

be a natural consequence of the

hierarchical information workflow of

those networks. Therefore, the

fluctuation repertories observed in

brain functional networks might be

elucidated by equivalent network

mechanisms that would expand our

comprehension of human brain

network dynamics.
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Appendix. The complex network statistics used in this work. We reported the w

0 to 1.

Measure Definition

Node strength ki ¼
P

j2Nwij

Shortest weighted path

length

dij ¼
P

wfg2ri$j
1=wfg

where ri$j is the shortest weighted path betwe

Characteristic path

length
L ¼ 1

n

P
i2NLi ¼ 1

n

P
i2N

P
j2N;j–i

dij

n�1

Clustering coefficient C ¼ 1
n

P
i2NCi ¼ 1

n

P
i2N

2ti
kiðki�1Þ,

with ti ¼ 1
2

P
j;h2NðawijawihawjhÞ1=3

Modularity Q ¼ 1
l

P
u;v2N½wuv � XiXj

l �dmi
dmj

, where l is the s

weights of V (whose elements are called mod

mi is the module containing the node i and dm
mi ¼ mj and 0 otherwise.

Eigenvector centrality ECi ¼ 1
k

P
z2ZðvÞxz, where ZðvÞ is a set of neigh

and k is a constant

Betweenness centrality BCi ¼ 1
ðn�1Þðn�2Þ

P
h;j2N;h–j;h–i;i–j

qhjðiÞ
qhj

, where qhj i

number of shortest paths between h and j, an

the number of shortest paths between h and j

through i

Small-worldness S ¼ C=Cr

L=Lr

x ¼ Lr

L � C
Cl

Please cite this article in press as: Zippo AG et al. Alternating Dynamics of Segregation and Integration in Human E

neuroscience.2017.12.004
Whitlow CT, Casanova R, Maldjian JA (2011) Effect of Resting-State

Functional MR Imaging Duration on Stability of Graph Theory

Metrics of Brain Network Methods: Results, 259.

Zippo AG, Gelsomino G, Van Duin P, Nencini S, Caramenti GC,

Valente M, Biella GEM (2013a) Small-world networks in neuronal

populations: a computational perspective. Neural Netw

44:143–156.

Zippo AG, Storchi R, Nencini S, Caramenti GC, Valente M, Biella

GEM (2013b) Neuronal functional connection graphs among

multiple areas of the rat somatosensory system during

spontaneous and evoked activities Sporns O, ed. PLoS Comput

Biol 9:e1003104.

APPENDIX A
eighted versions of each statistic. Weights w are assumed to span from

Interpretation

Sum of the edge weights of a given node i. Nodes with

relatively high values of k are called hubs

en i and j

The sum of the inverse of edge weights encountered in

the shortest path between node i and j

Measure of network integration

Measure of fine-grain network segregation. It counts

the average number of triangles t (3-node fully

connected graphs) present in the network

um of all

ules) and

i
dmj

¼ 1 if

It evaluates the tendency of the network to be reduced

in independent (or scarcely dependent) modules

bors of v It assigns relative scores to nodes whose connections

to high-scoring nodes contribute more to the score of

the node in question than equal connections to low-

scoring nodes

s the

d qhjðiÞ is
that pass

It is the amount of shortest paths that pass through the

node i. It roughly indicates how much information

burdens the node i

The indices quantify the affinity of a network to be a

small-world network. S should be greater than 1 and x
close to 0
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