133 research outputs found

    Synthesis, Characterization, and Adsorption Properties of Nanoporous Materials

    Get PDF
    During the last years, the authors have synthesized, characterized, and studied the adsorption properties of nitroprussides, Prussian blue analogues, akaganeites, MeAPOs, metal–organic frameworks, and extremely high specific surface amorphous silica, which allowed the storage of about 11 wt.% of hydrogen in the form of ammonia. In this sense, using the solid-state reaction method, sol–gel methodologies, together with aluminosilicate, high silica and non-aluminosilicate zeolite synthesis methods, were described, moreover was explained how to prepare active carbons along with the synthesis of Prussian blue analogues (PBAs) and nitroprussides (NPs). In addition, the characterization of the materials of interest applying X-ray diffraction, thermogravimetric analysis, DRIFTS, and room-temperature Mossbauer spectrometry was discussed. Besides, the concepts that define physical adsorption and examples of adsorption data, which were tested with the help of the Dubinin, osmotic adsorption and Langmuir-type isotherms, were defined. Later, the methodology was described for the measurement of adsorption data with the help of the volumetric method. Moreover, a description of the thermodynamics of adsorption, along with the methodology for the calculation of calorimetric data with the help of heat flow calorimeters together with the measurement of differential heats of adsorption data was developed. Finally, the different interaction forces that make possible adsorption were discussed

    NO2 sensing properties of macroporous In2O3-based powders fabricated by utilizing ultrasonic spray pyrolysis employing polymethylmethacrylate microspheres as a template

    Get PDF
    Macroporous (mp-) In2O3-based microspheres as a NO2 sensing material were prepared by the pyrolysis of atomized In(NO3)3 aqueous solutions containing polymethylmethacrylate (PMMA) microspheres (150 nm in diameter) as a template. Well-developed spherical macropores (less than 100 nm in diameter) reflecting the morphology of the PMMA microsphere templates could be formed in the In2O3-based microspheres. The introduction of macropores into In2O3-based microspheres was very effective in improving the NO2 response of their thick films fabricated on an alumina substrate equipped with interdigitated Pt electrodes (gap size: ca. 200 μm) by screen-printing. In addition, the addition of a little amount of SnO2 to the mp-In2O3 microspheres not only lowered the resistance in air but also improved the NO2 response. NO2 sensing properties of non-stacked microspheres of the mp-In2O3 mixed with SnO2 were also investigated by utilizing nano-gap Au electrodes (gap size: ca. 200 nm). The non-stacked microspheres showed fast response and recovery speeds to NO2, because of better diffusion capability of NO2

    Mechanisms and Kinetics for Sorption of CO2 on Bicontinuous Mesoporous Silica Modified with n-Propylamine

    Get PDF
    We studied equilibrium adsorption and uptake kinetics and identified molecular species that formed during sorption of carbon dioxide on amine-modified silica. Bicontinuous silicas (AMS-6 and MCM-48) were postsynthetically modified with (3-aminopropyl)triethoxysilane or (3-aminopropyl)methyldiethoxysilane, and amine-modified AMS-6 adsorbed more CO(2) than did amine-modified MCM-48. By in situ FTIR spectroscopy, we showed that the amine groups reacted with CO(2) and formed ammonium carbamate ion pairs as well as carbamic acids under both dry and moist conditions. The carbamic acid was stabilized by hydrogen bonds, and ammonium carbamate ion pairs formed preferably on sorbents with high densities of amine groups. Under dry conditions, silylpropylcarbamate formed, slowly, by condensing carbamic acid and silanol groups. The ratio of ammonium carbamate ion pairs to silylpropylcarbamate was higher for samples with high amine contents than samples with low amine contents. Bicarbonates or carbonates did not form under dry or moist conditions. The uptake of CO(2) was enhanced in the presence of water, which was rationalized by the observed release of additional amine groups under these conditions and related formation of ammonium carbamate ion pairs. Distinct evidence for a fourth and irreversibly formed moiety was observed under sorption of CO(2) under dry conditions. Significant amounts of physisorbed, linear CO(2) were detected at relatively high partial pressures of CO(2), such that they could adsorb only after the reactive amine groups were consumed.authorCount :7</p

    Performance of a CO 2

    No full text
    corecore