34 research outputs found

    Fundulus as the premier teleost model in environmental biology : opportunities for new insights using genomics

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 2 (2007): 257-286, doi:10.1016/j.cbd.2007.09.001.A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.This material is based on work supported by grants from the National Science Foundation DBI-0420504 (LJB), OCE 0308777 (DLC, RNW, BBR), BES-0553523 (AW), IBN 0236494 (BBR), IOB-0519579 (DHE), IOB-0543860 (DWT), FSML-0533189 (SC); National Institute of Health NIEHS P42-ES007381(GVC, MEH), P42-ES10356 (RTD), ES011588 (MFO); and NCRR P20 RR-016463 (DWT); Natural Sciences and Engineering Research Council of Canada Discovery (DLM, TDS, WSM) and Collaborative Research and Development Programs (DLM); NOAA/National Sea Grant NA86RG0052 (LJB), NA16RG2273 (SIK, MEH,GVC, JJS); Environmental Protection Agency U91620701 (WSB), R82902201(SC) and EPA’s Office of Research and Development (DEN)

    Immobilization of pancreatic islet cells on a two-dimensional microsupport

    No full text
    info:eu-repo/semantics/publishedComm. 35th Annual Meeting of the European Association for the Study of Diabetes - Brussels (Belgium), 29.09.199

    Studies of Early Events of Folding of a Predominately β‑Sheet Protein Using Fluorescence Correlation Spectroscopy and Other Biophysical Methods

    No full text
    The interplay between the early collapse of the unfolded state and the formation of the secondary structure has been the subject of extensive research in protein chemistry. In this study, we used the intestinal fatty acid binding protein (IFABP), a small model protein with predominately β-sheet structure, to study the early events, including the early chain collapse and the formation of the secondary structure. We used a combination offluorescence correlation spectroscopy and far-UV circular dichroism (CD) to understand how these early processes influence the late folding events like the stabilization of the secondary structure and aggregation. Acid-induced unfolded IFABP was found to collapse in the presence of low concentrations of added salt and aggregate at higher concentrations. Both the formation of the collapsed state and aggregation were conveniently probed by fluorescence correlation spectroscopy, a sensitive fluorescence technique with single-molecule resolution. In contrast, the formation of the secondary structure was monitored by far-UV CD. The results suggested that backbone hydrogen bond formation, not only the overall hydrophobicity of IFABP, may play crucial roles in the early collapse. Two mutant proteins positioned at a crucial nucleating site, namely, G80V and L64G, although being opposite in their overall hydrophobicity, collapsed relatively rapidly compared to the wild-type protein. The interconnection among the early collapse, the formation of the secondary structure, and aggregation was similar for these two mutants. Another mutant, G44V, which was identical in its overall hydrophobicity to G80V but situated in a region distant from the hydrophobic core, was found to be very different from G80V and L64G
    corecore