91 research outputs found

    Control of bulk superconductivity via surface-bound electric fields in ion-gated niobium nitride thin films

    Get PDF
    Ionic gating is a very popular tool to investigate and control the electric transport and electronic ground state in a wide variety of different materials. This is due to its capability to induce large modulations of the surface charge density by means of the electric-double-layer field-effect transistor (EDL-FET) architecture, often reaching values comparable to those occurring in metallic systems. Despite finding large success in tuning the phase diagram of low-carrier density systems, including cuprates and iron-based superconductors, its applicability to conventional metallic superconductors has received significantly less attention. In my talk, I will present the work which has been carried out in my research group over several years to investigate how ionic gating can tune the properties of metallic superconductor, using niobium nitride (NbN) as an emblematic case. By fabricating EDL-FETs on NbN thin films with thickness ranging between 10 and 40 nm, we observed that small positive and negative shifts in the critical temperature Tc could be induced by changing the gate-voltage polarity, and that the magnitude of these shifts increased upon decreasing the film thickness. These findings indicated that, despite the gate-induced electric field being confined in a thin layer at the surface by electrostatic screening, the perturbation to the superconducting state extends in a region much larger than a single unit cell. Indeed, the dependence of Tc on the gate voltage and thickness could be reconciled with the Eliashberg theory of superconductivity only if this thin surface layer is coupled to the underlying, unperturbed bulk via proximity effect. We also determined that the thickness of this surface layer (i.e. the screening length of the electric field) strongly increases for large gate electric fields, reaching values of the order of 3 nm at the highest doping. Ab-initio DFT calculations reproduced these results and linked this anomalous increase of the screening length to a distortion of the pristine charge density in the material upon the application of sufficiently large electric fields. This proximity-effect-induced transformation of the quasi-2D perturbation to the electron density into a 3D bulk modification of the superconducting properties seems to be a general behavior in gated superconductors that could hinder the possibility to obtain large Tc shifts in films thicker than the screening length. Consequently, we are currently focusing on exploring the tunability of ultrathin (< 5nm-thick) NbN films in order to maximize the gate-induced Tc shift, where we developed a novel technique of self-encapsulation in ultrathin niobium oxide to ensure the full reversibility of the gate modulation in these extremely sensitive devices

    SPR Biosensing MUA/Poly-L-lysine platform for the detection of 2,4-Dinitrophenol as small molecule model system

    Get PDF
    Surface Plasmon Resonance assays are being developed as alternative biodetection methods for a great number of pesticides and toxins.These substances typically have low molecular weight, making it necessary to perform competitive inhibition immunoassays. In most of the cases, the strategy is to immobilize a protein derivative of the analyte, which usually involves the appearance of nonspecific protein binding which limits the detection range of the assay. In this work we present results of a poly-L-lysine (Au-MUA-PLL) based sensor platform for quantitative determination of 2,4-dinitrophenol as model system for small molecular weight substances detection. The prepared sensor chip was characterized by means of Atomic Force Microscopy, Surface Plasmon Resonance, and Surface Enhanced Raman Spectroscopy. Experiments verified the absence of nonspecific protein adsorption to Au-MUA-PLL surfaces and the improvement of the competitive inhibition assays performance in comparison with single and mixed thiol self-assembled monolayers. The possibility of directly immobilizing 2,4-dinitrophenol to the poly-L-lysine containing platforms leads to an improvement in the detection of the soluble analyte by the competitive inhibition assay avoiding undesirable nonspecific protein adsorption.Therefore, Au-MUA-PLL surfaces constitute a suitable alternative for quantitative detection of small molecules when nonspecific adsorption cannot be avoided.Fil: Daza Millone, Maria Antonieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Ramirez, Eduardo A. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Chain, Cecilia Yamil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Crivaro, Andrea. Universidad Nacional de la Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Romanin, David Emmanuel. Universidad Nacional de la Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rumbo, Martín. Universidad Nacional de la Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Docena, Guillermo H. Universidad Nacional de la Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cocco, Mauro D. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche, Instituto Balseiro; ArgentinaFil: Pedano, María Laura. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche, Instituto Balseiro; ArgentinaFil: Fainstein, Alejandro. Comisión Nacional de Energía Atómica. Centro Atomico Bariloche, Instituto Balseiro; ArgentinaFil: Montoya, Jorgelina Ceferina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil; ArgentinaFil: Vela, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Salvarezza, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    SPR Biosensing MUA/Poly-L-lysine Platform for the Detection of 2,4-Dinitrophenol as Small Molecule Model System

    Get PDF
    Surface Plasmon Resonance assays are being developed as alternative biodetection methods for a great number of pesticides and toxins. These substances typically have low molecular weight, making it necessary to perform competitive inhibition immunoassays. In most of the cases, the strategy is to immobilize a protein derivative of the analyte, which usually involves the appearance of nonspecific protein binding which limits the detection range of the assay. In this work we present results of a poly-L-lysine (Au-MUA-PLL) based sensor platform for quantitative determination of 2,4-dinitrophenol as model system for small molecular weight substances detection. The prepared sensor chip was characterized by means of Atomic Force Microscopy, Surface Plasmon Resonance, and Surface Enhanced Raman Spectroscopy. Experiments verified the absence of nonspecific protein adsorption to Au-MUA-PLL surfaces and the improvement of the competitive inhibition assays performance in comparison with single and mixed thiol self-assembled monolayers. The possibility of directly immobilizing 2,4-dinitrophenol to the poly-L-lysine containing platforms leads to an improvement in the detection of the soluble analyte by the competitive inhibition assay avoiding undesirable nonspecific protein adsorption. Therefore, Au-MUA-PLL surfaces constitute a suitable alternative for quantitative detection of small molecules when nonspecific adsorption cannot be avoided.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasInstituto de Estudios Inmunológicos y FisiopatológicosFacultad de Ciencias Exacta

    Local treatment with lactate prevents intestinal inflammation in the TNBS-induced colitis model

    Get PDF
    Lactate has long been considered as a metabolic by-product of cells. Recently, this view has been changed by the observation that lactate can act as a signaling molecule and regulates critical functions of the immune system. We previously identified lactate as the component responsible for the modulation of innate immune epithelial response of fermented milk supernatants in vitro. We have also shown that lactate downregulates proinflammatory responses of macrophages and dendritic cells. So far, in vivo effects of lactate on intestinal inflammation have not been reported. We evaluated the effect of intrarectal administration of lactate in a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The increase in lactate concentration in colon promoted protective effects against TNBS-induced colitis preventing histopathological damage, as well as bacterial translocation and rise of IL-6 levels in serum. Using intestinal epithelial reporter cells, we found that flagellin treatment induced reporter gene expression, which was abrogated by lactate treatment as well as by glycolysis inhibitors. Furthermore, lactate treatment modulated glucose uptake, indicating that high levels of extracellular lactate can impair metabolic reprograming induced by proinflammatory activation. These results suggest that lactate could be a potential beneficial microbiota metabolite and may constitute an overlooked effector with modulatory properties.Centro de Investigación y Desarrollo en Criotecnología de AlimentosInstituto de Estudios Inmunológicos y Fisiopatológico

    Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability

    Get PDF
    The insulin IGF-1–PI3K–Akt signaling pathway has been suggested to improve cardiac inotropism and increase Ca2+ handling through the effects of the protein kinase Akt. However, the underlying molecular mechanisms remain largely unknown. In this study, we provide evidence for an unanticipated regulatory function of Akt controlling L-type Ca2+ channel (LTCC) protein density. The pore-forming channel subunit Cavα1 contains highly conserved PEST sequences (signals for rapid protein degradation), and in-frame deletion of these PEST sequences results in increased Cavα1 protein levels. Our findings show that Akt-dependent phosphorylation of Cavβ2, the LTCC chaperone for Cavα1, antagonizes Cavα1 protein degradation by preventing Cavα1 PEST sequence recognition, leading to increased LTCC density and the consequent modulation of Ca2+ channel function. This novel mechanism by which Akt modulates LTCC stability could profoundly influence cardiac myocyte Ca2+ entry, Ca2+ handling, and contractility

    Single-channel properties of a stretch-sensitive chloride channel in the human mast cell line HMC-1

    Get PDF
    A stretch-activated (SA) Cl− channel in the plasma membrane of the human mast cell line HMC-1 was identified in outside-out patch-clamp experiments. SA currents, induced by pressure applied to the pipette, exhibited voltage dependence with strong outward rectification (55.1 pS at +100 mV and an about tenfold lower conductance at −100 mV). The probability of the SA channel being open (Po) also showed steep outward rectification and pressure dependence. The open-time distribution was fitted with three components with time constants of τ1o = 755.1 ms, τ2o = 166.4 ms, and τ3o = 16.5 ms at +60 mV. The closed-time distribution also required three components with time constants of τ1c = 661.6 ms, τ2c = 253.2 ms, and τ3c = 5.6 ms at +60 mV. Lowering extracellular Cl− concentration reduced the conductance, shifted the reversal potential toward chloride reversal potential, and decreased the Po at positive potentials. The SA Cl− currents were reversibly blocked by the chloride channel blocker 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) but not by (Z)-1-(p-dimethylaminoethoxyphenyl)-1,2-diphenyl-1-butene (tamoxifen). Furthermore, in HMC-1 cells swelling due to osmotic stress, DIDS could inhibit the increase in intracellular [Ca2+] and degranulation. We conclude that in the HMC-1 cell line, the SA outward currents are mediated by Cl− influx. The SA Cl− channel might contribute to mast cell degranulation caused by mechanical stimuli or accelerate membrane fusion during the degranulation process

    SPR Biosensing MUA/Poly-L-lysine Platform for the Detection of 2,4-Dinitrophenol as Small Molecule Model System

    Get PDF
    Surface Plasmon Resonance assays are being developed as alternative biodetection methods for a great number of pesticides and toxins. These substances typically have low molecular weight, making it necessary to perform competitive inhibition immunoassays. In most of the cases, the strategy is to immobilize a protein derivative of the analyte, which usually involves the appearance of nonspecific protein binding which limits the detection range of the assay. In this work we present results of a poly-L-lysine (Au-MUA-PLL) based sensor platform for quantitative determination of 2,4-dinitrophenol as model system for small molecular weight substances detection. The prepared sensor chip was characterized by means of Atomic Force Microscopy, Surface Plasmon Resonance, and Surface Enhanced Raman Spectroscopy. Experiments verified the absence of nonspecific protein adsorption to Au-MUA-PLL surfaces and the improvement of the competitive inhibition assays performance in comparison with single and mixed thiol self-assembled monolayers. The possibility of directly immobilizing 2,4-dinitrophenol to the poly-L-lysine containing platforms leads to an improvement in the detection of the soluble analyte by the competitive inhibition assay avoiding undesirable nonspecific protein adsorption. Therefore, Au-MUA-PLL surfaces constitute a suitable alternative for quantitative detection of small molecules when nonspecific adsorption cannot be avoided.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasInstituto de Estudios Inmunológicos y FisiopatológicosFacultad de Ciencias Exacta

    Ultra-rare RTEL1 gene variants associate with acute severity of COVID-19 and evolution to pulmonary fibrosis as a specific long COVID disorder

    Get PDF
    Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel coronavirus that caused an ongoing pandemic of a pathology termed Coronavirus Disease 19 (COVID-19). Several studies reported that both COVID-19 and RTEL1 variants are associated with shorter telomere length, but a direct association between the two is not generally acknowledged. Here we demonstrate that up to 8.6% of severe COVID-19 patients bear RTEL1 ultra-rare variants, and show how this subgroup can be recognized. Methods: A cohort of 2246 SARS-CoV-2-positive subjects, collected within the GEN-COVID Multicenter study, was used in this work. Whole exome sequencing analysis was performed using the NovaSeq6000 System, and machine learning methods were used for candidate gene selection of severity. A nested study, comparing severely affected patients bearing or not variants in the selected gene, was used for the characterisation of specific clinical features connected to variants in both acute and post-acute phases. Results: Our GEN-COVID cohort revealed a total of 151 patients carrying at least one RTEL1 ultra-rare variant, which was selected as a specific acute severity feature. From a clinical point of view, these patients showed higher liver function indices, as well as increased CRP and inflammatory markers, such as IL-6. Moreover, compared to control subjects, they present autoimmune disorders more frequently. Finally, their decreased diffusion lung capacity for carbon monoxide after six months of COVID-19 suggests that RTEL1 variants can contribute to the development of SARS-CoV-2-elicited lung fibrosis. Conclusion: RTEL1 ultra-rare variants can be considered as a predictive marker of COVID-19 severity, as well as a marker of pathological evolution in pulmonary fibrosis in the post-COVID phase. This notion can be used for a rapid screening in hospitalized infected people, for vaccine prioritization, and appropriate follow-up assessment for subjects at risk. Trial Registration NCT04549831 (www.clinicaltrial.org

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as “Respiratory or thoracic disease”, supporting their link with COVID-19 severity outcome
    corecore