38 research outputs found

    Does land irrigation actually reduce foraging habitat for breeding lesser kestrels? The role of crop types

    Get PDF
    The lesser kestrel is a Globally Threatened Species which large decline has been related to recent agricultural changes in European pseudo-steppes. Irrigation is considered as one of the major threats for this and other steppe birds, but the actual effects of irrigation on foraging habitat selection have been scarcely examined. We studied the selection of traditional dry cereal farming and irrigated habitats by foraging lesser kestrels during the breeding cycle, paying especial attention to possible differences among crop types. Field margins were the scarcest but the most positively selected habitat, and different stages of cereals cultivated following traditional practices were selected depending on the breeding and agriculture cycles. Effects of irrigation were dual. While irrigated maize and other crop types were avoided, alfalfa was used in proportion to its availability and later highly selected after harvesting. Moreover, field margins in irrigated land were selected in a similar way than in traditional dry farmland. Therefore, although maintaining low-intensity farming is still the main recommendation for this species, new management options arise when social pressure makes irrigation unavoidable. Further agri-environmental schemes in these circumstances should thus promote cultivation of alfalfa with a low input of biocides while avoiding maize, together with increasing field margins, to make compatible irrigation with lesser kestrel conservation. © 2004 Elsevier Ltd. All rights reserved.Peer Reviewe

    High-sensitivity cardiac troponin T and copeptin assays to improve diagnostic accuracy of exercise stress test in patients with suspected coronary artery disease

    Get PDF
    Background: The average diagnostic sensitivity of exercise stress tests (ESTs) is lower than that of other non-invasive cardiac stress tests. The aim of the study was to examine whether high-sensitivity cardiac troponin T (hs-cTnT) or copeptin concentrations rise in response to inducible myocardial ischaemia and may improve the diagnostic accuracy of ESTs. Methods and results: An EST was performed stepwise on a bicycle ergometer by 383 consecutive patients with suspected or progression of coronary artery disease (CAD). In addition venous blood samples for measurement of hs-cTnT and copeptin were collected prior to EST, at peak exercise, and 4 h after EST. Coronary angiography was assessed for all patients. Patients with significant CAD (n=224) were more likely to be male and older compared to patients with non-significant CAD (n=169). Positive EST was documented in 125 (55.8%) patients with significant CAD and in 69 (43.4%) patients with non-significant CAD. Copeptin and hs-cTnT concentrations at baseline were higher in patients with significant CAD (copeptin: 10.8 pmol/l (interquartile range (IQR) 8.1–15.6) vs 9.4 pmol/l (IQR 7.1–13.9); p=0.04; hs-cTnT: 3.0 ng/l (IQR <3.0–5.4) vs <3.0 ng/l (IQR <3.0); p=0.006). Hs-cTnT improved sensitivity (61.6% vs 55.8%), specificity (67.7% vs 56.6%) and the positive predictive value (PPV) (72.3% vs 64.4%) and negative (55.2% vs 47.6%) predictive value (NPV) of EST. Copeptin could not improve sensitivity (55.4% vs 55.8%) and reduced specificity, PPV and NPV. Conclusions: The measurement of hs-cTnT during EST improves sensitivity, specificity, and positive and negative predictive values. In contrast, measurement of copeptin does not improve diagnostic sensitivity and reduces specificity

    Diabetes and the Heart – a Never-ending Story

    Full text link

    Association of a specific haplotype across the genes MMP1 and MMP3 with radiographic joint destruction in rheumatoid arthritis

    Get PDF
    The genetic background of rheumatoid arthritis (RA) is only partly understood, and several genes seem to be involved. The matrix metalloproteinases MMP1 (interstitial collagenase) and MMP3 (stromelysin 1) are thought to be important in destructive joint changes seen in RA. In the present study, functional relevant promoter polymorphisms of MMP1 and MMP3 were genotyped in 308 patients and in 110 controls, to test whether the polymorphisms contribute to the severity of the disease measured by radiographic progression of joint destruction. For comparison, the shared epitope of HLA DR4 and DR1 (SE) was determined by polymerase chain reaction. There was no association of MMP polymorphisms with susceptibility to RA. However, a strong linkage disequilibrium was observed between the 1G/2G (MMP1) and the 5A/6A (MMP3) polymorphisms (P << 10(-6); linkage disequilibrium index D' = 0.46). In factorial regression, the degree of radiographic joint destruction correlated significantly with the 1G-5A haplotype (P = 0.0001) and the interaction term 'estimated number of 1G-5A haplotypes × duration of disease' (P = 0.0007). This association was phasic, indicating that possession of the 1G-5A haplotype has a protective effect over a period of about 15 years of RA, but might be associated with a more pronounced radiographic progression later on. Similar results were also found with the 1G allele of MMP1 alone (P = 0.015) and with the interaction term 'estimated number of 1G alleles × duration of disease' (P = 0.014). The correlation of SE with the Ratingen score was comparable (0.044). The regression model of MMP haplotypes explained 35% of the variance of the radiographic score, whereas the SE explained 29%. The 1G-5A haplotype across the closely linked MMP1 and MMP3 gene loci is a newly described genetic factor strongly associated with the progression of joint damage in RA. Our findings suggest that there are haplotypes in a MMP cluster region that modify the joint destruction in RA in a phasic manner

    52 Genetic Loci Influencing Myocardial Mass.

    Get PDF
    BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets

    Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function

    Get PDF
    BACKGROUND: Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function. METHODS: A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function. RESULTS: The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue. CONCLUSION: The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies. FUNDING: For detailed information per study, see Acknowledgments.This work was supported by a grant from the US National Heart, Lung, and Blood Institute (N01-HL-25195; R01HL 093328 to RSV), a MAIFOR grant from the University Medical Center Mainz, Germany (to PSW), the Center for Translational Vascular Biology (CTVB) of the Johannes Gutenberg-University of Mainz, and the Federal Ministry of Research and Education, Germany (BMBF 01EO1003 to PSW). This work was also supported by the research project Greifswald Approach to Individualized Medicine (GANI_MED). GANI_MED was funded by the Federal Ministry of Education and Research and the Ministry of Cultural Affairs of the Federal State of Mecklenburg, West Pomerania (contract 03IS2061A). We thank all study participants, and the colleagues and coworkers from all cohorts and sites who were involved in the generation of data or in the analysis. We especially thank Andrew Johnson (FHS) for generation of the gene annotation database used for analysis. We thank the German Center for Cardiovascular Research (DZHK e.V.) for supporting the analysis and publication of this project. RSV is a member of the Scientific Advisory Board of the DZHK. Data on CAD and MI were contributed by CARDIoGRAMplusC4D investigators. See Supplemental Acknowledgments for consortium details. PSW, JFF, AS, AT, TZ, RSV, and MD had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis

    Welcher Belastungstest bei Verdacht auf stabile Angina pectoris?

    No full text
    corecore