4 research outputs found
Microbial polysaccharides: An emerging family of natural biomaterials for cancer therapy and diagnostics
Microbial polysaccharides (MPs) offer immense diversity in structural and functional properties. They are extensively used in advance biomedical science owing to their superior biodegradability, hemocompatibility, and capability to imitate the natural extracellular matrix microenvironment. Ease in tailoring, inherent bio-activity, distinct mucoadhesiveness, ability to absorb hydrophobic drugs, and plentiful availability of MPs make them prolific green biomaterials to overcome the significant constraints of cancer chemotherapeutics. Many studies have demonstrated their application to obstruct tumor development and extend survival through immune activation, apoptosis induction, and cell cycle arrest by MPs. Synoptic investigations of MPs are compulsory to decode applied basics in recent inclinations towards cancer regimens. The current review focuses on the anticancer properties of commercially available and newly explored MPs, and outlines their direct and indirect mode of action. The review also highlights cutting-edge MPs-based drug delivery systems to augment the specificity and efficiency of available chemotherapeutics, as well as their emerging role in theranostics.</p
Nuclear ErbB-2-Induced Transcriptome Drives Triple Negative Breast Cancer Growth
Abstract
Triple negative breast cancer (TNBC) refers to tumors that do not express clinically significant levels of estrogen and progesterone receptors, and lack membrane overexpression or gene amplification of ErbB-2 tyrosine kinase receptor. Transcriptome and proteome heterogeneity of TNBC poses a major challenge to precision medicine. Gene expression analyses have categorized TNBC into distinct molecular subtypes. Up to 78% of clinical TNBCs belong to the basal-like (BL) subtype. Here we found ErbB-2 in an unanticipated scenario: the nucleus of TNBC (NErbB-2). Our study on ErbB-2 alternative splicing, using a PCR-sequencing approach combined with RNA interference, revealed that BL TNBC cells express the canonical ErbB-2 (WTErbB-2), encoded by transcript 1, and the non-canonical isoform c, encoded by alternative transcript 3 (T3). The latter was not previously reported in normal or malignant cells. To characterize the isoform c we designed siRNAs targeting T3 (T3 siRNAs), which silenced up to 93% of said isoform. Transfection of T3 siRNAs into BL cells expressing only isoform c or both isoform c and WTErbB-2 was sufficient to decrease cell proliferation. Intratumoral injections of T3 siRNAs into mice bearing BL TN tumors also blocked in vivo growth. To explore whether isoform c growth-promoting effect is due to its functions as a transcriptional regulator, we performed RNA-seq in BL cells expressing only this isoform. We identified a set of genes differentially regulated in BL cells where we evicted isoform c from the nucleus, as compared to control cells. In the up-regulated group, we found enrichment of pro-apoptotic and tumor suppressor genes and in the down-regulated one, genes involved in proliferation and stemness. We used gene set enrichment analysis (GSEA) to identify the biological processes associated with these isoform c-regulated genes. We found a pronounced enrichment of gene sets related to apoptosis, activation of DNA damage pathways and cell cycle arrest in response to eviction of nuclear isoform c. GSEA also revealed negative regulation of gene sets involved in cell motility, cellular differentiation and growth pathways in BL cells lacking nuclear isoform c expression. These results suggest that NErbB-2 function modulates tumor growth and promotes a metastatic phenotype in TNBC. Furthermore, our clinical findings identified NErbB-2 as an independent predictor of shorter OS
(HR 2.54; 95% CI 1.22-5.28; P = 0.013), DFS (HR 2.91; 95% CI 1.44-5.87; P = 0.003), and DMFS (HR 2.59; 95% CI 1.20-5.60; P = 0.015) in 99 TN primary tumors. Our discoveries challenge the present scenario of drug development for personalized BC medicine that focuses on wild-type proteins, which conserve the canonical domains and are located in their classical cellular compartments, highlighting the potential of NErbB-2 isoforms as novel therapeutic targets and clinical biomarkers in TNBC.</jats:p
Abstract P5-13-32: Mucin 4 expression in high risk breast cancer: Predicting and overcoming resistance to immunotherapy
Abstract
Background HER2-positive (+) and triple negative breast cancer (TNBC) have the worst survival among BC. BC patients are treated with chemotherapy (CT) and/or radiotherapy (RT), and HER2+ BC patients also receive targeted therapies, such as trastuzumab (Tz). The abundance of tumor infiltrating lymphocytes (TILs), in both HER2+ and TNBC, has a major good prognostic value. Thus, indicating that immunological evasion mechanisms are present in the tumor microenvironment (TME) hampering the efficacy of the treatments. We previously showed that soluble tumor necrosis factor α (sTNF) induces upregulation of mucin 4 (MUC4), which shields Tz epitope on HER2 impairing Tz binding and its effects. In preclinical models of de no5vo Tz-resistant tumors, administration of the sTNF blocking agent INB03 (DN) together with Tz inhibited tumor growth. We proved that MUC4 expression is an independent predictor of poor DFS in patients treated with adjuvant Tz. Our goal is to study whether MUC4 plays a role in tumor immune evasion in HER2+ and TNBC. Methods Untreated primary BC samples were assessed for TILs density (H&E) and MUC4 expression by immunohistochemistry. Tumors with TILs ≥30% and &gt;50%, for TNBC and HER2+ BC respectively, and MUC4 scores 2 and 3 (0-3) were deemed positive. A cohort of 56 TNBC and 90 HER2+BC, stage I-III were retrospectively retrieved from Hospital Fernández and Instituto Henry Moore from 2013-2017, and clinicopathological and treatment characteristics were obtained from electronic records. TNBC were treated with adjuvant (41) or neoadjuvant CT +/- RT (15). HER2+BC patients received adjuvant Tz + CT. The association between MUC4 and OS was assessed by Kaplan Meier and log rank test and between MUC4 and TILs using Chi2. JIMT-1 HER2+ BC, de novo resistant tumors to Tz, containing a doxycycline (Dox)-inducible shRNA MUC4 plasmid (JIMT-1shMUC4) growing in nude mice were treated with IgG, Tz, DN or Tz + DN. Tumor growth was measured and macrophages and NK cells were determined in the TME by flow cytometry. Anti-asialo GM1 and clodronate-encapsulated liposomes were used to deplete NK cells and macrophages, respectively. Results We found an inverse relationship between TILs and MUC4 expression in HER2+ and TNBC (P=0.02 and P= 5 x10-5, respectively). Patients with MUC4+ TNBC have a shorter OS (P=0.03) and MUC4 was an independent predictor of OS [P=0.01; HR 4.9 (95%CI 1.4-17.0)]. To study MUC4 involvement in macrophage and NK cells recruitment in a Tz resistant model, nude mice bearing JIMT-1-shMUC4 tumors were treated or not with Dox to abolish MUC4 expression. Both groups received IgG, Tz, DN or DN + Tz. In control groups (without Dox), only Tz + DN administration was able to inhibit tumor growth (75% inhibition, P&lt;0.0001 vs. IgG), in line with our previous results, and DN treatment reduced MUC4 expression. Knockdown of MUC4 expression by Dox, showed that Tz alone was effective in inhibiting JIMT-shMUC4 tumor growth at similar levels than Tz + DN group. Tumor growth inhibition was accompanied by an increase in NK cells activation and degranulation, and a rise in M1/M2 macrophage ratio. Depletion of macrophages or NK cells totally blunted antitumor effect of Tz + DN in control tumors. In MUC4-silenced tumors only macrophage depletion was able to abolish Tz antitumor effect. Conclusion Our results suggest that i) MUC4 expression is associated with immunologically “cold” HER2+ and TNBC, inducing an immunosuppressive TME that reflects in poor DFS/OS, and it confers resistance to Tz in HER2+ BC; ii) elimination of MUC4 expression reverses resistance to Tz; iii) tumor infiltrating macrophages are critical to the anti-tumor response in HER2+ BC. Patients with MUC4+ HER2+ or MUC4+ TNBC should benefit from sTNF blockade treatment leading to MUC4 downregulation and higher TILs, which would result in a better response to Tz and probably to immune checkpoint inhibitors.
Citation Format: Roxana Schillaci, Sofia Bruni, Florencia Mauro, María F Mercogliano, Agustina Roldan-Deamicis, Cecilia J Proietti, Rosalía Cordo-Russo, Gloria Inurrigarro, Agustina Dupont, Carla Adami, Daniel Lopez Della Vecchia, Sabrina Barchuck, Silvina Figurelli, Ernesto Gil Deza, Sandra Ares, Felipe G Gercovich, Patricia V Elizalde. Mucin 4 expression in high risk breast cancer: Predicting and overcoming resistance to immunotherapy [abstract]. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr P5-13-32.</jats:p
