154 research outputs found
Low Frequency Ventilation During Cardiopulmonary Bypass to Protect Postoperative Lung Function in Cardiac Valvular Surgery:The PROTECTION Phase II Randomized Trial
BackgroundCardiac surgery with cardiopulmonary bypass (CPB) triggers pulmonary injury. In this trial we assessed the feasibility, safety, and efficacy of low frequency ventilation (LFV) during CPB in patients undergoing valvular surgery.Methods and ResultsPatients with severe mitral or aortic valve disease were randomized to either LFV or usual care. Primary outcomes included release of generic inflammatory and vascular biomarkers and the lungâspecific biomarker sRAGE (soluble receptor for advance glycation end products) up to 24 hours postsurgery. Secondary outcomes included pulmonary function tests and 6âminute walking test up to 8âweeks postdischarge. Sixtyâthree patients were randomized (33 LFV versus 30 usual care). Mean age was 66.8âyears and 30% were female. LFV was associated with changes of sRAGE (soluble receptor for advance glycation end products) levels (geometric mean ratio, 3.05; [95% CI, 1.13â8.24] 10âminutes post CPB, and 1.07 [95% CI, 0.64â1.79], 0.84 [95% CI, 0.55â1.27], 0.67 [95% CI, 0.42â1.07], and 0.62 [95% CI, 0.45â0.85] at 2, 6, 12, and 24âhours post CPB respectively). No changes were observed for any of the generic biomarkers. Respiratory index soon after surgery (mean difference, â0.61 [95% CI, â1.24 to 0.015] 10âminutes post end of CPB), forced expiratory volume after 1âsecond/forced vital capacity ratio (0.050 [95% CI, 0.007â0.093] at 6 to 8âweeks posâsurgery), Forced vital capacity alone (95% CI, â0.191âL [â0.394 to 0.012]) and 6âminute walking test score at discharge (63.2âm [95% CI, 12.9â113.6]) were better preserved in the LFV group. No other differences were noted.ConclusionsThe use of LFV during CPB in patients undergoing valvular surgery was feasible and safe and was associated with changes in sRAGE levels along with better preserved lung function and walking performance. These observations warrant further investigation in larger future studie
Neoproterozoic to early Paleozoic extensional and compressional history of East Laurentian margin sequences: The Moine Supergroup, Scottish Caledonides
Neoproterozoic siliciclastic-dominated sequences are widespread along the eastern margin of Laurentia and are related to rifting associated with the breakout of Laurentia from the supercontinent Rodinia. Detrital zircons from the Moine Supergroup, NW Scotland, yield Archean to early Neoproterozoic U-Pb ages, consistent with derivation from the Grenville-Sveconorwegian orogen and environs and accumulation postâ1000 Ma. U-Pb zircon ages for felsic and associated mafic intrusions confirm a widespread pulse of extension-related magmatism at around 870 Ma. Pegmatites yielding U-Pb zircon ages between 830 Ma and 745 Ma constrain a series of deformation and metamorphic pulses related to Knoydartian orogenesis of the host Moinerocks. Additional U-Pb zircon and monazite data, and 40Ar/39Ar ages for pegmatites and host gneisses indicate high-grade metamorphic events at ca. 458â446 Ma and ca. 426 Maduring the Caledonian orogenic cycle.The presence of early Neoproterozoic silici clastic sedimentation and deformation in the Moine and equivalent successions around the North Atlantic and their absence along strike in eastern North America reflect contrasting Laurentian paleogeography during the breakup of Rodinia. The North Atlantic realm occupied an external location on the margin of Laurentia, and this region acted as a locus for accumulation of detritus (Moine Supergroup and equivalents) derived from the Grenville-Sveconorwegian orogenic welt, which developed as a consequence of collisional assembly of Rodinia. Neoproterozoic orogenic activity corresponds with theinferred development of convergent platemargin activity along the periphery of the supercontinent. In contrast in eastern North America, which lay within the internal parts of Rodinia, sedimentation did not commence until the mid-Neoproterozoic (ca. 760 Ma) during initial stages of supercontinent fragmentation. In the North Atlantic region, this time frame corresponds to a second pulse of extension represented by units such as the Dalradian Supergroup, which unconformably overlies the predeformed Moine succession
Analysis of the Maize dicer-like1 Mutant, fuzzy tassel, Implicates MicroRNAs in Anther Maturation and Dehiscence
Sexual reproduction in plants requires development of haploid gametophytes from somatic tissues. Pollen is the male gametophyte and develops within the stamen; defects in the somatic tissues of the stamen and in the male gametophyte itself can result in male sterility. The maize fuzzy tassel (fzt) mutant has a mutation in dicer-like1 (dcl1), which encodes a key enzyme required for microRNA (miRNA) biogenesis. Many miRNAs are reduced in fzt, and fzt mutants exhibit a broad range of developmental defects, including male sterility. To gain further insight into the roles of miRNAs in maize stamen development, we conducted a detailed analysis of the male sterility defects in fzt mutants. Early development was normal in fzt mutant anthers, however fzt anthers arrested in late stages of anther maturation and did not dehisce. A minority of locules in fzt anthers also exhibited anther wall defects. At maturity, very little pollen in fzt anthers was viable or able to germinate. Normal pollen is tricellular at maturity; pollen from fzt anthers included a mixture of unicellular, bicellular, and tricellular pollen. Pollen from normal anthers is loaded with starch before dehiscence, however pollen from fzt anthers failed to accumulate starch. Our results indicate an absolute requirement for miRNAs in the final stages of anther and pollen maturation in maize. Anther wall defects also suggest that miRNAs have key roles earlier in anther development. We discuss candidate miRNAs and pathways that might underlie fzt anther defects, and also note that male sterility in fzt resembles water deficit-induced male sterility, highlighting a possible link between development and stress responses in plants.ECU Open Access Publishing Support Fun
Knowledge translation strategies to improve the use of evidence in public health decision making in local government: intervention design and implementation plan
Background: Knowledge translation strategies are an approach to increase the use of evidence within policy and practice decision-making contexts. In clinical and health service contexts, knowledge translation strategies have focused on individual behavior change, however the multi-system context of public health requires a multi-level, multi-strategy approach. This paper describes the design of and implementation plan for a knowledge translation intervention for public health decision making in local government. Methods: Four preliminary research studies contributed findings to the design of the intervention: a systematic review of knowledge translation intervention effectiveness research, a scoping study of knowledge translation perspectives and relevant theory literature, a survey of the local government public health workforce, and a study of the use of evidence-informed decision-making for public health in local government. A logic model was then developed to represent the putative pathways between intervention inputs, processes, and outcomes operating between individual-, organizational-, and system-level strategies. This formed the basis of the intervention plan. Results: The systematic and scoping reviews identified that effective and promising strategies to increase access to research evidence require an integrated intervention of skill development, access to a knowledge broker, resources and tools for evidence-informed decision making, and networking for information sharing. Interviews and survey analysis suggested that the intervention needs to operate at individual and organizational levels, comprising workforce development, access to evidence, and regular contact with a knowledge broker to increase access to intervention evidence; develop skills in appraisal and integration of evidence; strengthen networks; and explore organizational factors to build organizational cultures receptive to embedding evidence in practice. The logic model incorporated these inputs and strategies with a set of outcomes to measure the intervention\u27s effectiveness based on the theoretical frameworks, evaluation studies, and decision-maker experiences. Conclusion: Documenting the design of and implementation plan for this knowledge translation intervention provides a transparent, theoretical, and practical approach to a complex intervention. It provides significant insights into how practitioners might engage with evidence in public health decision making. While this intervention model was designed for the local government context, it is likely to be applicable and generalizable across sectors and settings.</div
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2â4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genesâincluding reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)âin critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.
Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, PÂ =Â 1.65Â ĂÂ 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, PÂ =Â 2.3Â ĂÂ 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, PÂ =Â 3.98Â ĂÂ Â 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, PÂ =Â 4.99Â ĂÂ 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
Behavioural and Developmental Interventions for Autism Spectrum Disorder: A Clinical Systematic Review
Background: Much controversy exists regarding the clinical efficacy of behavioural and developmental interventions for improving the core symptoms of autism spectrum disorders (ASD). We conducted a systematic review to summarize the evidence on the effectiveness of behavioural and developmental interventions for ASD. Methods and Findings: Comprehensive searches were conducted in 22 electronic databases through May 2007. Further information was obtained through hand searching journals, searching reference lists, databases of theses and dissertations, and contacting experts in the field. Experimental and observational analytic studies were included if they were written in English and reported the efficacy of any behavioural or developmental intervention for individuals with ASD. Two independent reviewers made the final study selection, extracted data, and reached consensus on study quality. Results were summarized descriptively and, where possible, meta-analyses of the study results were conducted. One-hundred-and-one studies at predominantly high risk of bias that reported inconsistent results across various interventions were included in the review. Meta-analyses of three controlled clinical trials showed that Lovaas treatment was superior to special education on measures of adaptive behaviour, communication and interaction, comprehensive language, daily living skills, expressive language, overall intellectual functioning and socialization. High-intensity Lovaas was superior to low-intensity Lovaas on measures of intellectual functioning in two retrospective cohort studies. Pooling the results of two randomized controlle
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. Š 2021, The Author(s)
- âŚ