355 research outputs found

    Change Is in the Air: The Hypoxic Induction of Phenotype Switching in Melanoma

    Get PDF
    Melanoma cells can switch from a highly proliferative, less invasive state to a highly invasive, less proliferative state, a phenomenon termed phenotype switching. This results in a highly heterogenous tumor, where a slow-growing, aggressive population of cells may resist tumor therapy, and it predicts tumor recurrence. Here we discuss the observation made by Widmer et al. that hypoxia may drive phenotype switching

    Phase II trial of the oral platinum complex JM216 in non-small-cell lung cancer: An EORTC early clinical studies group investigation

    Get PDF
    Background JM216 is a new oral platinum complex with dose-limiting toxicity myelosuppresssion, now undergoing phase II evaluation. Patients and methods JM216 was evaluated as first line therapy in non-small-cell lung cancer. Seventeen patients received 120 mg/m2/day for five days repeated every three weeks. Results Toxicity was manageable, the commonest side-effects being nausea, vomiting, diarrhoea, constipation and asthenia. Myelososuppression was generally grade <2 and there were no cases of neutropenic sepsis or bleeding. Thirteen patients were fully evaluable for response. No sustained objective responses were reported. One patient was reported as stable disease had a partial response after three courses but was progressing again after four. An additional five patients had stable disease (46.2%). Conclusions Although some patients may have had useful palliation, JM216 did not appear to have significant antitumour activity in non-small-cell lung cance

    Особенности промышленного развития монофункциональных городов Донецкой области

    Get PDF
    Рассмотрены особенности промышленности моноотраслевых городов Донецкой области. Предлагаются мероприятия по решению проблем их социально-экономического развития.Розглянуто особливості промисловості моногалузевих міст Донецької області. Пропонуються заходи щодо вирішення проблем їх соціально-економічного розвитку.The paper describes the features of the industry in mono-branch cities of Donetsk region. The measures are offered to solve the problems concerning their socio-economic development

    Modeling the morphodynamics of coastal responses to extreme events: what shape are we in?

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., & Warner, J. C. Modeling the morphodynamics of coastal responses to extreme events: what shape are we in? Annual Review of Marine Science, 14, (2022): 457–492, https://doi.org/10.1146/annurev-marine-032221-090215.This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.All authors except D.R. were partially supported by the IFMSIP project, funded by US Office of Naval Research grant PE 0601153N under contracts N00014-17-1-2459 (Deltares), N00014-18-1-2785 (University of Delaware), N0001419WX00733 (US Naval Research Laboratory, Monterey), N0001418WX01447 (US Naval Research Laboratory, Stennis Space Center), and N0001418IP00016 (US Geological Survey). C.R.S., C.A.H., T.S.K., and J.C.W. were supported by the US Geological Survey Coastal/Marine Hazards and Resources Program. A.v.D. and M.v.d.L. were supported by the Deltares Strategic Research project Quantifying Flood Hazards and Impacts. M.O. acknowledges support from National Science Foundation project OCE-1554892

    Practical sand transport formula for non-breaking waves and currents

    Get PDF
    Open Access funded by Engineering and Physical Sciences Research Council Under a Creative Commons license Acknowledgements This work is part of the SANTOSS project (‘SANd Transport in OScillatory flows in the Sheet-flow regime’) funded by the UK's EPSRC (GR/T28089/01) and STW in The Netherlands (TCB.6586). JW acknowledges Deltares strategic research funding under project number 1202359.09. Richard Soulsby is gratefully acknowledged for valuable discussions and feedback on the formula during the SANTOSS project.Peer reviewedPostprin

    A Climate Index Optimized for Longshore Sediment Transport Reveals Interannual and Multidecadal Littoral Cell Rotations

    Get PDF
    A recent 35-year endpoint shoreline change analysis revealed signi&#64257;cant counterclockwiserotations occurring in north-central Oregon, USA, littoral cells that extend 10s of kilometers in length.While the potential for severe El Niños to contribute to littoral cell rotations at seasonal to interannual scalewas previously recognized, the dynamics resulting in persistent (multidecadal) rotation were unknown,largely due to a lack of historical wave conditions extending back multiple decades and the dif&#64257;culty ofseparating the timescales of shoreline variability in a high energy region. This study addresses this questionby (1) developing a statistical downscaling framework to characterize wave conditions relevant for longshoresediment transport during data-poor decades and (2) applying a one-line shoreline change model toquantitatively assess the potential for such large embayed beaches to rotate. A climateINdex was optimizedto capture variability in longshore wave power as a proxy for potentialLOngshore Sediment Transport(LOST_IN), and a procedure was developed to simulate many realizations of potential wave conditions fromthe index. Waves were transformed dynamically with Simulating Waves Nearshore to the nearshore asinputs to a one-line model that revealed shoreline rotations of embayed beaches at multiple time and spatialscales not previously discernible from infrequent observations. Model results indicate that littoral cellsrespond to both interannual and multidecadal oscillations, producing comparable shoreline excursions toextreme El Niño winters. The technique quantitatively relates morphodynamic forcing to speci&#64257;c climatepatterns and has the potential to better identify and quantify coastal variability on timescales relevant to achanging climate.This work would not have been possible without funding from the NSF Graduate Research Fellowship Program (GRFP) through NSF grant DGE-1314109, the Coastal and Ocean Climate Applications (COCA) program through NOAA grant NA15OAR4310243, NOAA’s Regional Integrated Sciences and Assessments Program (RISA), under NOAA grant NA15OAR4310145, and the Spanish Ministerio de Educación Cultura y Deporte FPU (Formación del Profesorado Universitario) studentship BOE-A-2013-12235. Beach survey data collection undertaken on the Oregon coast was made possible by the Northwest Association of Networked Ocean Observing Systems (NANOOS) through NOAA grant NA16NOS0120019

    New energy geographies : a case study of yoga, meditation and healthfulness

    Get PDF
    Beginning with a routine day in the life of a practitioner of yoga and meditation and emphasising the importance of nurturing, maintaining and preventing the dissipation of diverse ‘energies’, this paper explores the possibilities for geographical health studies which take seriously ‘new energy geographies’. It is explained how this account is derived from in-depth fieldwork tracing how practitioners of yoga and meditation find times and spaces for these practices, often in the face of busy urban lifestyles. Attention is paid to the ‘energy talk’ featuring heavily in how practitioners describe the benefits that they perceive themselves to derive from these practices, and to claims made about ‘energies’ generated during the time-spaces of these practices which seemingly flow, usually with positive effects, into other domains of their lives. The paper then discusses the implications of this energy talk in the context of: (a) critically reviewing conventional approaches to studying ‘energy geographies’; (b) identifying an alertness to the likes of ‘affective energies’ surfacing in recent theoretically-attuned works of human geography (and cognate disciplines); and (c) exploring differing understandings of energy/energies extant in geographical studies of health and in step with the empirical research materials presented about yoga, meditation and healthfulness. While orientated towards explicitly geographical inquiries, the paper is intended as a statement of interest to the wider medical humanities
    corecore