1,037 research outputs found

    Theory of adsorbate induced surface reconstruction on W(100)

    Full text link
    We report results of a theoretical study on an adsorbate induced surface reconstruction. Hydrogen adsorption on a W(100) surface causes a switching transition in the symmetry of the displacements of the W atoms within the ordered c(2x2) phase. This transition is modeled by an effective Hamiltonian, where the hydrogen degrees of freedom are integrated out. Based on extensive Monte Carlo renormalisation group calculations we show that the switching transition is of second order at high temperatures and of first order at low temperatures. This behavior is qualitatively explained in terms of an XY model where there is an interplay between four and eight fold anisotropy fields. We also compare the calculated phase diagrams with a simple mean field theory.Comment: CSC Preprint, 31 pages (plain TeX file, no figures

    Surface coating and particle size are main factors explaining the transcriptome-wide responses of the earthworm Lumbricus rubellus to silver nanoparticles

    Get PDF
    Due to the unique properties of differently sized and coated silver nanoparticles (AgNPs), they are used in important industrial and biomedical applications. However, their environmental fate in soil ecosystems and potential mechanisms of toxicity remain elusive, especially at the level of transcriptional regulation. We investigated the transcriptome-wide responses of the earthworm Lumbricus rubellus exposed to nine AgNPs differing in surface coating/charge (bovine serum albumin/negative AgNP_BSA, chitosan/positive AgNP_Chit, and polyvinylpyrrolidone/neutral AgNP_PVP) and sizes (20, 35 and 50 nm) at concentrations close to the EC50 value related to reproduction. AgNO3 was used in two concentrations to benchmark the AgNP effects against those of the Ag salt. A correlation was observed between the number of differentially expressed genes (DEGs) and Ag internal body concentration. Only metallothionein was regulated by all treatments. Medium sized AgNPs caused the most pronounced transcriptional responses, while AgNO3 affected the transcriptome less. Medium sized AgNP_BSA exposure caused the most extensive transcriptional responses with 684 DEGs. Gene ontology enrichment analysis of medium sized AgNP_BSA affected DEGs revealed that mitochondrial electron transport, autophagy and phagocytosis, mesoderm and heart development and microtubule organisation were affected. This was also confirmed by gene set enrichment for KEGG pathway analysis, indicating that phagocytosis, autophagy and signalling pathways related to mesoderm formation were significantly up regulated. All AgNP_BSA and AgNP_PVP exposures caused severe down regulation of ribosomal translation, suggesting that the high energy-demanding protein synthesis process is inhibited. Our data confirm the mechanisms previously identified among other animal models and human cell lines. To conclude, coating formulation and particle size severely impact transcriptional responses at a particular nanoparticle size, suggesting diverse mechanistic responses depending on the coating type

    The helium-rich cataclysmic variable SBSS 1108+574

    Get PDF
    We present time-resolved spectroscopy and photometry of the dwarf nova SBSS 1108+574, obtained during the 2012 outburst. Its quiescent spectrum is unusually rich in helium, showing broad, double-peaked emission lines from the accretion disc. We measure a line flux ratio He I 5875/Hα = 0.81 ± 0.04, a much higher ratio than typically observed in cataclysmic variable stars (CVs). The outburst spectrum shows hydrogen and helium in absorption, with weak emission of Hα and He I 6678, as well as strong He II emission. From our photometry, we find the superhump period to be 56.34 ± 0.18 min, in agreement with the previously published result. The spectroscopic period, derived from the radial velocities of the emission lines, is found to be 55.3 ± 0.8 min, consistent with a previously identified photometric orbital period, and significantly below the normal CV period minimum. This indicates that the donor in SBSS 1108+574 is highly evolved. The superhump excess derived from our photometry implies a mass ratio of q = 0.086 ± 0.014. Our spectroscopy reveals a grazing eclipse of the large outbursting disc. As the disc is significantly larger during outburst, it is unlikely that an eclipse will be detectable in quiescence. The relatively high accretion rate implied by the detection of outbursts, together with the large mass ratio, suggests that SBSS 1108+574 is still evolving towards its period minimum

    Expression and Temperature-Dependent Regulation of the Beta2-Microglobulin (Cyca-B2m) Gene in a Cold-Blooded Vertebrate, the Common Carp (Cyprinus carpio L.)

    Get PDF
    Expression of beta2-microglobulin (β 2m) in the common carp was studied using a polyclonal antibody raised against a recombinant protein obtained from eukaryotic expression of the Cyca-B2m gene. β 2m is expressed on peripheral blood Ig+ and Ig- lymphocytes, but not on erythrocytes and thrombocytes. In spleen and pronephros, dull- and bright-positive populations could be identified correlating with the presence of erythrocytes, thrombocytes, and mature leucocytes or immature and mature cells from the lympho-myeloid lineage, respectively. Thymocytes were shown to be comprised of a single bright-positive population. The Cyca-B2m polyclonal antiserum was used in conjunction with a similarly produced polyclonal antiserum to an MHC class I (Cyca-UA) α chain to investigate the expression of class I molecules on peripheral blood leucocytes (PBL) at different permissive temperatures. At 12℃, a temporary downregulation of class I molecules was demonstrated, which recovered to normal levels within 3 days. However, at 6℃, a lasting absence of class I cell-surface expression was observed, which could be restored slowly by transfer to 12C. The expression of immunoglobulin molecules on B cells was unaffected by temperature changes. The absence of the class cell-surface expression was shown to be the result of a lack of sufficient Cyca-B2m gene transcription, although Cyca-UA mRNA was present at comparable levels at all temperatures. This suggests that class I expression is regulated by a temperature-sensitive transcription of the Cyca-B2m gene

    Invariant vector fields and the prolongation method for supersymmetric quantum systems

    Full text link
    The kinematical and dynamical symmetries of equations describing the time evolution of quantum systems like the supersymmetric harmonic oscillator in one space dimension and the interaction of a non-relativistic spin one-half particle in a constant magnetic field are reviewed from the point of view of the vector field prolongation method. Generators of supersymmetries are then introduced so that we get Lie superalgebras of symmetries and supersymmetries. This approach does not require the introduction of Grassmann valued differential equations but a specific matrix realization and the concept of dynamical symmetry. The Jaynes-Cummings model and supersymmetric generalizations are then studied. We show how it is closely related to the preceding models. Lie algebras of symmetries and supersymmetries are also obtained.Comment: 37 pages, 7 table

    Mechanical Ventilation and the Titer of Antibodies as Risk Factors for the Development of Transfusion-Related Lung Injury

    Get PDF
    Purpose. Onset of transfusion-related acute lung injury (TRALI) is suggested to be a threshold-event. Data is lacking on the relation between titer of antibodies infused and onset of TRALI. We determined whether onset of TRALI is dependent on the titer of MHC-I antibodies infused in a combined model of ventilator-induced lung injury and antibody-induced TRALl. Methods. BALB/c mice were ventilated for five hours with low (7.5 ml/kg) or high (15 ml/kg) tidal volume. After three hours of MV, TRALI was induced by infusion of 0.5 mg/kg, 2.0 mg/kg or 4.5 mg/kg MHC-I antibodies. Control animals received vehicle. After five hours of MV, animals were sacrificed. Results. MV with high tidal volumes resulted in increased levels of all markers of lung injury compared to animals ventilated with low tidal MV. In ventilator-induced lung injury, infusion of 4.5 mg/kg of antibodies further increased pulmonary wet-to-dry ratio, pulmonary neutrophil influx and pulmonary KC levels, whereas infusion of lower dose of antibodies did not augment lung injury. In contrast, mice ventilated with low tidal volumes did not develop lung injury, irrespective of the dose of antibody used. Conclusions. In the presence of injurious MV, onset of TRALI depends on the titer of antibodies infused

    Fluorescent Risedronate Analogues Reveal Bisphosphonate Uptake by Bone Marrow Monocytes and Localization Around Osteocytes In Vivo

    Get PDF
    Bisphosphonates are effective antiresorptive agents owing to their bone-targeting property and ability to inhibit osteoclasts. It remains unclear, however, whether any non-osteoclast cells are directly affected by these drugs in vivo. Two fluorescent risedronate analogues, carboxyfluorescein-labeled risedronate (FAM-RIS) and Alexa Fluor 647–labeled risedronate (AF647-RIS), were used to address this question. Twenty-four hours after injection into 3-month-old mice, fluorescent risedronate analogues were bound to bone surfaces. More detailed analysis revealed labeling of vascular channel walls within cortical bone. Furthermore, fluorescent risedronate analogues were present in osteocytic lacunae in close proximity to vascular channels and localized to the lacunae of newly embedded osteocytes close to the bone surface. Following injection into newborn rabbits, intracellular uptake of fluorescently labeled risedronate was detected in osteoclasts, and the active analogue FAM-RIS caused accumulation of unprenylated Rap1A in these cells. In addition, CD14high bone marrow monocytes showed relatively high levels of uptake of fluorescently labeled risedronate, which correlated with selective accumulation of unprenylated Rap1A in CD14+ cells, as well as osteoclasts, following treatment with risedronate in vivo. Similar results were obtained when either rabbit or human bone marrow cells were treated with fluorescent risedronate analogues in vitro. These findings suggest that the capacity of different cell types to endocytose bisphosphonate is a major determinant for the degree of cellular drug uptake in vitro as well as in vivo. In conclusion, this study shows that in addition to bone-resorbing osteoclasts, bisphosphonates may exert direct effects on bone marrow monocytes in vivo. © 2010 American Society for Bone and Mineral Researc
    corecore