14 research outputs found

    Engraftment of engineered ES cell–derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium

    Get PDF
    Cellular cardiomyoplasty is an attractive option for the treatment of severe heart failure. It is, however, still unclear and controversial which is the most promising cell source. Therefore, we investigated and examined the fate and functional impact of bone marrow (BM) cells and embryonic stem cell (ES cell)–derived cardiomyocytes after transplantation into the infarcted mouse heart. This proved particularly challenging for the ES cells, as their enrichment into cardiomyocytes and their long-term engraftment and tumorigenicity are still poorly understood. We generated transgenic ES cells expressing puromycin resistance and enhanced green fluorescent protein cassettes under control of a cardiac-specific promoter. Puromycin selection resulted in a highly purified (>99%) cardiomyocyte population, and the yield of cardiomyocytes increased 6–10-fold because of induction of proliferation on purification. Long-term engraftment (4–5 months) was observed when co-transplanting selected ES cell–derived cardiomyocytes and fibroblasts into the injured heart of syngeneic mice, and no teratoma formation was found (n = 60). Although transplantation of ES cell–derived cardiomyocytes improved heart function, BM cells had no positive effects. Furthermore, no contribution of BM cells to cardiac, endothelial, or smooth muscle neogenesis was detected. Hence, our results demonstrate that ES-based cell therapy is a promising approach for the treatment of impaired myocardial function and provides better results than BM-derived cells

    Use of IFNγ/IL10 Ratio for Stratification of Hydrocortisone Therapy in Patients With Septic Shock

    Get PDF
    Large clinical trials testing hydrocortisone therapy in septic shock have produced conflicting results. Subgroups may benefit of hydrocortisone treatment depending on their individual immune response. We performed an exploratory analysis of the database from the international randomized controlled clinical trial Corticosteroid Therapy of Septic Shock (CORTICUS) employing machine learning to a panel of 137 variables collected from the Berlin subcohort comprising 83 patients including demographic and clinical measures, organ failure scores, leukocyte counts and levels of circulating cytokines. The identified theranostic marker was validated against data from a cohort of the Hellenic Sepsis Study Group (HSSG) (n = 246), patients enrolled in the clinical trial of Sodium Selenite and Procalcitonin Guided Antimicrobial Therapy in Severe Sepsis (SISPCT, n = 118), and another, smaller clinical trial (Crossover study, n = 20). In addition, in vitro blood culture experiments and in vivo experiments in mouse models were performed to assess biological plausibility. A low serum IFNγ/IL10 ratio predicted increased survival in the hydrocortisone group whereas a high ratio predicted better survival in the placebo group. Using this marker for a decision rule, we applied it to three validation sets and observed the same trend. Experimental studies in vitro revealed that IFNγ/IL10 was negatively associated with the load of (heat inactivated) pathogens in spiked human blood and in septic mouse models. Accordingly, an in silico analysis of published IFNγ and IL10 values in bacteremic and non-bacteremic patients with the Systemic Inflammatory Response Syndrome supported this association between the ratio and pathogen burden. We propose IFNγ/IL10 as a molecular marker supporting the decision to administer hydrocortisone to patients in septic shock. Prospective clinical studies are necessary and standard operating procedures need to be implemented, particularly to define a generic threshold. If confirmed, IFNγ/IL10 may become a suitable theranostic marker for an urging clinical need

    Use of IFNγ/IL10 Ratio for Stratification of Hydrocortisone Therapy in Patients With Septic Shock

    Get PDF
    Large clinical trials testing hydrocortisone therapy in septic shock have produced conflicting results. Subgroups may benefit of hydrocortisone treatment depending on their individual immune response. We performed an exploratory analysis of the database from the international randomized controlled clinical trial Corticosteroid Therapy of Septic Shock (CORTICUS) employing machine learning to a panel of 137 variables collected from the Berlin subcohort comprising 83 patients including demographic and clinical measures, organ failure scores, leukocyte counts and levels of circulating cytokines. The identified theranostic marker was validated against data from a cohort of the Hellenic Sepsis Study Group (HSSG) (n = 246), patients enrolled in the clinical trial of Sodium Selenite and Procalcitonin Guided Antimicrobial Therapy in Severe Sepsis (SISPCT, n = 118), and another, smaller clinical trial (Crossover study, n = 20). In addition, in vitro blood culture experiments and in vivo experiments in mouse models were performed to assess biological plausibility. A low serum IFNg/IL10 ratio predicted increased survival in the hydrocortisone group whereas a high ratio predicted better survival in the placebo group. Using this marker for a decision rule, we applied it to three validation sets and observed the same trend. Experimental studies in vitro revealed that IFNg/IL10 was negatively associated with the load of (heat inactivated) pathogens in spiked human blood and in septic mouse models. Accordingly, an in silico analysis of published IFNg and IL10 values in bacteremic and non-bacteremic patients with the Systemic Inflammatory Response Syndrome supported this association between the ratio and pathogen burden. We propose IFNg/IL10 as a molecular marker supporting the decision to administer hydrocortisone to patients in septic shock. Prospective clinical studies are necessary and standard operating procedures need to be implemented, particularly to define a generic threshold. If confirmed, IFNg/IL10 may become a suitable theranostic marker for an urging clinical need

    Generation and Characterization of an Inducible Cx43 Overexpression System in Mouse Embryonic Stem Cells

    No full text
    Connexins (Cx) are a large family of membrane proteins that can form intercellular connections, so-called gap junctions between adjacent cells. Cx43 is widely expressed in mammals and has a variety of different functions, such as the propagation of electrical conduction in the cardiac ventricle. Despite Cx43 knockout models, many questions regarding the biology of Cx43 in health and disease remain unanswered. Herein we report the establishment of a Cre-inducible Cx43 overexpression system in murine embryonic stem (ES) cells. This enables the investigation of the impact of Cx43 overexpression in somatic cells. We utilized a double reporter system to label Cx43-overexpressing cells via mCherry fluorescence and exogenous Cx43 via fusion with P2A peptide to visualize its distribution pattern. We proved the functionality of our systems in ES cells, HeLa cells, and 3T3-fibroblasts and demonstrated the formation of functional gap junctions based on dye diffusion and FRAP experiments. In addition, Cx43-overexpressing ES cells could be differentiated into viable cardiomyocytes, as shown by the formation of cross striation and spontaneous beating. Analysis revealed faster and more rhythmic beating of Cx43-overexpressing cell clusters. Thus, our Cx43 overexpression systems enable the investigation of Cx43 biology and function in cardiomyocytes and other somatic cells

    Use of IFNγ/IL10 Ratio for Stratification of Hydrocortisone Therapy in Patients With Septic Shock

    No full text
    Large clinical trials testing hydrocortisone therapy in septic shock have produced conflicting results. Subgroups may benefit of hydrocortisone treatment depending on their individual immune response. We performed an exploratory analysis of the database from the international randomized controlled clinical trial Corticosteroid Therapy of Septic Shock (CORTICUS) employing machine learning to a panel of 137 variables collected from the Berlin subcohort comprising 83 patients including demographic and clinical measures, organ failure scores, leukocyte counts and levels of circulating cytokines. The identified theranostic marker was validated against data from a cohort of the Hellenic Sepsis Study Group (HSSG) (n = 246), patients enrolled in the clinical trial of Sodium Selenite and Procalcitonin Guided Antimicrobial Therapy in Severe Sepsis (SISPCT, n = 118), and another, smaller clinical trial (Crossover study, n = 20). In addition, in vitro blood culture experiments and in vivo experiments in mouse models were performed to assess biological plausibility. A low serum IFNg/IL10 ratio predicted increased survival in the hydrocortisone group whereas a high ratio predicted better survival in the placebo group. Using this marker for a decision rule, we applied it to three validation sets and observed the same trend. Experimental studies in vitro revealed that IFNg/IL10 was negatively associated with the load of (heat inactivated) pathogens in spiked human blood and in septic mouse models. Accordingly, an in silico analysis of published IFNg and IL10 values in bacteremic and non-bacteremic patients with the Systemic Inflammatory Response Syndrome supported this association between the ratio and pathogen burden. We propose IFNg/IL10 as a molecular marker supporting the decision to administer hydrocortisone to patients in septic shock. Prospective clinical studies are necessary and standard operating procedures need to be implemented, particularly to define a generic threshold. If confirmed, IFNg/IL10 may become a suitable theranostic marker for an urging clinical need

    Use of IFNγ/IL10 Ratio for Stratification of Hydrocortisone Therapy in Patients With Septic Shock

    No full text
    Large clinical trials testing hydrocortisone therapy in septic shock have produced conflicting results. Subgroups may benefit of hydrocortisone treatment depending on their individual immune response. We performed an exploratory analysis of the database from the international randomized controlled clinical trial Corticosteroid Therapy of Septic Shock (CORTICUS) employing machine learning to a panel of 137 variables collected from the Berlin subcohort comprising 83 patients including demographic and clinical measures, organ failure scores, leukocyte counts and levels of circulating cytokines. The identified theranostic marker was validated against data from a cohort of the Hellenic Sepsis Study Group (HSSG) (n = 246), patients enrolled in the clinical trial of Sodium Selenite and Procalcitonin Guided Antimicrobial Therapy in Severe Sepsis (SISPCT, n = 118), and another, smaller clinical trial (Crossover study, n = 20). In addition, in vitro blood culture experiments and in vivo experiments in mouse models were performed to assess biological plausibility. A low serum IFNg/IL10 ratio predicted increased survival in the hydrocortisone group whereas a high ratio predicted better survival in the placebo group. Using this marker for a decision rule, we applied it to three validation sets and observed the same trend. Experimental studies in vitro revealed that IFNg/IL10 was negatively associated with the load of (heat inactivated) pathogens in spiked human blood and in septic mouse models. Accordingly, an in silico analysis of published IFNg and IL10 values in bacteremic and non-bacteremic patients with the Systemic Inflammatory Response Syndrome supported this association between the ratio and pathogen burden. We propose IFNg/IL10 as a molecular marker supporting the decision to administer hydrocortisone to patients in septic shock. Prospective clinical studies are necessary and standard operating procedures need to be implemented, particularly to define a generic threshold. If confirmed, IFNg/IL10 may become a suitable theranostic marker for an urging clinical need

    Lack of laminin ?1 in embryonic stem cell-derived cardiomyocytes causes inhomogeneous electrical spreading despite intact differentiation and function

    No full text
    Laminins form a large family of extracellular matrix (ECM) proteins, and their expression is a prerequisite for normal embryonic development. Herein we investigated the role of the laminin 1 chain for cardiac muscle differentiation and function using cardiomyocytes derived from embryonic stem cells deficient in the LAMC1 gene. Laminin 1 (-/-) cardiomyocytes lacked basement membranes (BM), whereas their sarcomeric organization was unaffected. Accordingly, electrical activity and hormonal regulation were found to be intact. However, the inadequate BM formation led to an increase of ECM deposits between adjacent cardiomyocytes, and this resulted in defects of the electrical signal propagation. Furthermore, we also found an increase in the number of pacemaker areas. Thus, although laminin and intact BM are not essential for cardiomyocyte development and differentiation per se, they are required for the normal deposition of matrix molecules and critical for intact electrical signal propagatio
    corecore