295 research outputs found

    Tumor necrosis factor-alpha inhibition reduces CXCL-8 levels but fails to prevent fibrin generation and does not improve outcome in a rabbit model of endotoxic shock

    Get PDF
    The effects of a monoclonal antibody (mAb) to tumor necrosis factor-alpha (TNF-alpha) were examined in a rabbit model of endotoxic shock. Intravenous administration of lipopolysaccharide (100 microg/kg/hr) for 6 hours (n = 11) increased TNF-alpha levels. Fibrinogen was partially consumed, and fibrin deposits were seen in kidney and lungs at 24 hours. Mortality at 24 hours was 64%. Levels of interleukin-8 (aka CXCL-8) were notably increased. Mean arterial pressure (MAP) and leukocyte counts decreased, whereas creatinine levels were enhanced. The anti-TNF-alpha mAb (20 mg/kg i.v. bolus + 5 mg/kg/h i.v. for the first 90 minutes) (n = 10) efficiently inhibited the TNF-activity. Rabbits exhibited lower CXCL-8 levels; MAP improved, the decrease in leukocyte counts was partially prevented and creatinine levels were lower, but fibrinogen, fibrin deposits in kidneys and lungs and mortality, 55%, were similar to the LPS group. Rabbits that did not survive exhibited lower fibrinogen levels, more fibrin in kidneys and lungs and higher CXCL-8 and creatinine levels than survivors, while there were no differences in TNF-alpha, MAP and leukocytes. Thus, the inhibition of TNF-alpha, although beneficial through lowering CXCL-8 levels, is not enough to improve the outcome, which could be partly due to the inability to prevent the fibrin deposits formation in kidneys and lungs

    What is the biological basis of pattern formation of skin lesions?

    Get PDF
    Pattern recognition is at the heart of clinical dermatology and dermatopathology. Yet, while every practitioner of the art of dermatological diagnosis recognizes the supreme value of diagnostic cues provided by defined patterns of 'efflorescences', few contemplate on the biological basis of pattern formation in and of skin lesions. Vice versa, developmental and theoretical biologists, who would be best prepared to study skin lesion patterns, are lamentably slow to discover this field as a uniquely instructive testing ground for probing theoretical concepts on pattern generation in the human system. As a result, we have at best scraped the surface of understanding the biological basis of pattern formation of skin lesions, and widely open questions dominate over definitive answer. As a symmetry-breaking force, pattern formation represents one of the most fundamental principles that nature enlists for system organization. Thus, the peculiar and often characteristic arrangements that skin lesions display provide a unique opportunity to reflect upon – and to experimentally dissect – the powerful organizing principles at the crossroads of developmental, skin and theoretical biology, genetics, and clinical dermatology that underlie these – increasingly less enigmatic – phenomena. The current 'Controversies' feature offers a range of different perspectives on how pattern formation of skin lesions can be approached. With this, we hope to encourage more systematic interdisciplinary research efforts geared at unraveling the many unsolved, yet utterly fascinating mysteries of dermatological pattern formation. In short: never a dull pattern

    Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies

    Get PDF
    We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.Comment: 19 pages, 3 figures. V2: Few typos corrected and references added. Matches published version JCAP 02 (2016) 03

    Investigating the peculiar emission from the new VHE gamma-ray source H1722+119

    Get PDF
    The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, E>100E > 100 GeV) γ\gamma-ray band with a statistical significance of 5.9 σ\sigma. The integral flux above 150 GeV is estimated to be (2.0±0.5)(2.0\pm 0.5) per cent of the Crab Nebula flux. We used contemporaneous high energy (HE, 100 MeV <E<100 < E < 100 GeV) γ\gamma-ray observations from Fermi-LAT (Large Area Telescope) to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z=0.34±0.15z = 0.34 \pm 0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the OVRO (Owens Valley Radio Observatory) telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution (SED) of H1722+119 shows surprising behaviour in the 3×10141018\sim 3\times10^{14} - 10^{18} Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model.Comment: 12 pages, 5 figures, 2 table

    The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula

    Get PDF
    MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent a series of upgrades, involving the exchange of the MAGIC-I camera and its trigger system, as well as the upgrade of the readout system of both telescopes. We use observations of the Crab Nebula taken at low and medium zenith angles to assess the key performance parameters of the MAGIC stereo system. For low zenith angle observations, the standard trigger threshold of the MAGIC telescopes is ~50GeV. The integral sensitivity for point-like sources with Crab Nebula-like spectrum above 220GeV is (0.66+/-0.03)% of Crab Nebula flux in 50 h of observations. The angular resolution, defined as the sigma of a 2-dimensional Gaussian distribution, at those energies is < 0.07 degree, while the energy resolution is 16%. We also re-evaluate the effect of the systematic uncertainty on the data taken with the MAGIC telescopes after the upgrade. We estimate that the systematic uncertainties can be divided in the following components: < 15% in energy scale, 11-18% in flux normalization and +/-0.15 for the energy spectrum power-law slope.Comment: 21 pages, 25 figures, accepted for publication in Astroparticle Physic

    Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes

    Get PDF
    The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between October 2009 and April 2011. Analysis of this data sample using the latest improvements in the MAGIC stereoscopic software provided an unprecedented precision of spectral and night-by-night light curve determination at gamma rays. We derived a differential spectrum with a single instrument from 50 GeV up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC results, combined with Fermi-LAT data, show a flat and broad Inverse Compton peak. The overall fit to the data between 1 GeV and 30 TeV is not well described by a log-parabola function. We find that a modified log-parabola function with an exponent of 2.5 instead of 2 provides a good description of the data (χ2=35/26\chi^2=35/26). Using systematic uncertainties of red the MAGIC and Fermi-LAT measurements we determine the position of the Inverse Compton peak to be at (53 ±\pm 3stat + 31syst -13syst) GeV, which is the most precise estimation up to date and is dominated by the systematic effects. There is no hint of the integral flux variability on daily scales at energies above 300 GeV when systematic uncertainties are included in the flux measurement. We consider three state- of-the-art theoretical models to describe the overall spectral energy distribution of the Crab Nebula. The constant B-field model cannot satisfactorily reproduce the VHE spectral measurements presented in this work, having particular difficulty reproducing the broadness of the observed IC peak. Most probably this implies that the assumption of the homogeneity of the magnetic field inside the nebula is incorrect. On the other hand, the time-dependent 1D spectral model provides a good fit of the new VHE results when considering a 80 {\mu}G magnetic field. However, it fails to match the data when including the morphology of the nebula at lower wavelengths.Comment: accepted by JHEAp, 9 pages, 6 figure

    Multi-Wavelength Observations of the Blazar 1ES 1011+496 in Spring 2008

    Get PDF
    The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability. The differential VHE spectrum could be described with a power-law function. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder when brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on nonsimultaneous data, and is well described by a standard one zone synchrotron self Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.Comment: 13 pages, accepted for publication in MNRA

    MAGIC detection of short-term variability of the high-peaked BL Lac object 1ES 0806+524

    Get PDF
    The high-frequency-peaked BL Lac (HBL) 1ES 0806+524 (z = 0.138) was discovered in VHE γ\gamma rays in 2008. Until now, the broad-band spectrum of 1ES 0806+524 has been only poorly characterized, in particular at high energies. We analysed multiwavelength observations from γ\gamma rays to radio performed from 2011 January to March, which were triggered by the high activity detected at optical frequencies. These observations constitute the most precise determination of the broad-band emission of 1ES 0806+524 to date. The stereoscopic MAGIC observations yielded a γ\gamma-ray signal above 250 GeV of (3.7±0.7)(3.7 \pm 0.7) per cent of the Crab Nebula flux with a statistical significance of 9.9 σ\sigma. The multiwavelength observations showed significant variability in essentially all energy bands, including a VHE γ\gamma-ray flare that lasted less than one night, which provided unprecedented evidence for short-term variability in 1ES 0806+524. The spectrum of this flare is well described by a power law with a photon index of 2.97±0.292.97 \pm 0.29 between \sim150 GeV and 1 TeV and an integral flux of (9.3±1.9)(9.3 \pm 1.9) per cent of the Crab Nebula flux above 250 GeV. The spectrum during the non-flaring VHE activity is compatible with the only available VHE observation performed in 2008 with VERITAS when the source was in a low optical state. The broad-band spectral energy distribution can be described with a one-zone Synchrotron Self Compton model with parameters typical for HBLs, indicating that 1ES 0806+524 is not substantially different from the HBLs previously detected.Comment: 12 pages, 8 figures, 3 tables, accepted 2015 April 20 for publication in Monthly Notices of the Royal Astronomical Society Main Journa
    corecore