32 research outputs found

    Aptitud anaerobia en deportistas de combate del sexo femenino

    Full text link
    Se estudia en nivel de preparación anaerobia en tres selecciones femeninas de deportes de combate de alta calificación: 15 judocas, 7 esgrimistas de la modalidad sable y 16 taekwondoistas. Fueron medidos indicadores neuromusculares, al final de la preparación especial, utilizando los tests de ergosalto y de saltabilidad de Bosco, Se determinan las estadísticas descriptivas, significación de las diferencias entre deportes y la correlación entre indicadores. Se obtienen los resultados: Pala (15,7 ± 2,1-19,2 ± 1,5 W/Kg), Pana (14,5 ± 1,9-17,7 ± 1,2 W/Kg), Los SCAB, SSAB, SCPD, SCPCD y SDPC mas altos fueron los de las esgrimistas y la mejor coordinación se encontró en las competidoras de esgrima, mientras que los mayores valores de CELAS fueron los de las judocas. Los resultados obtenidos se corresponden con las características del gesto deportivo que prevalece en cada uno de los deportes estudiados

    An fMRI Study to Analyze Neural Correlates of Presence during Virtual Reality Experiences

    Full text link
    [EN] In the field of virtual reality (VR), many efforts have been made to analyze presence, the sense of being in the virtual world. However, it is only recently that functional magnetic resonance imaging (fMRI) has been used to study presence during an automatic navigation through a virtual environment. In the present work, our aim was to use fMRI to study the sense of presence during a VR-free navigation task, in comparison with visualization of photographs and videos (automatic navigations through the same environment). The main goal was to analyze the usefulness of fMRI for this purpose, evaluating whether, in this context, the interaction between the subject and the environment is performed naturally, hiding the role of technology in the experience. We monitored 14 right-handed healthy females aged between 19 and 25 years. Frontal, parietal and occipital regions showed their involvement during free virtual navigation. Moreover, activation in the dorsolateral prefrontal cortex was also shown to be negatively correlated to sense of presence and the postcentral parietal cortex and insula showed a parametric increased activation according to the condition-related sense of presence, which suggests that stimulus attention and self-awareness processes related to the insula may be linked to the sense of presence.This study was funded by the Ministerio de Educación y Ciencia Spain, Project Game Teen (TIN2010-20187) and partially by projects Consolider-C (SEJ2006-14301/PSIC), ‘CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII’, the Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educación, 2008-157) and the Consolider INGENIO program (CSD2007-00012). The work of Miriam Clemente was supported by the Generalitat Valenciana under a VALi+d Grant.Clemente Bellido, M.; Rey, B.; Rodríguez Pujadas, A.; Barros Loscertales, A.; Baños, RM.; Botella, C.; Alcañiz Raya, ML.... (2014). An fMRI Study to Analyze Neural Correlates of Presence during Virtual Reality Experiences. Interacting with Computers. 26(3):269-284. https://doi.org/10.1093/iwc/iwt037S269284263Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The Parahippocampus Subserves Topographical Learning in Man. Cerebral Cortex, 6(6), 823-829. doi:10.1093/cercor/6.6.823Alcañiz, M., Rey, B., Tembl, J., & Parkhutik, V. (2009). A Neuroscience Approach to Virtual Reality Experience Using Transcranial Doppler Monitoring. Presence: Teleoperators and Virtual Environments, 18(2), 97-111. doi:10.1162/pres.18.2.97Amaro, E., & Barker, G. J. (2006). Study design in fMRI: Basic principles. Brain and Cognition, 60(3), 220-232. doi:10.1016/j.bandc.2005.11.009Astur, R. S., St. Germain, S. A., Baker, E. K., Calhoun, V., Pearlson, G. D., & Constable, R. T. (2005). fMRI Hippocampal Activity During a VirtualRadial Arm Maze. Applied Psychophysiology and Biofeedback, 30(3), 307-317. doi:10.1007/s10484-005-6385-zBaños, R. M., Botella, C., Garcia-Palacios, A., Villa, H., Perpiña, C., & Alcañiz, M. (2000). Presence and Reality Judgment in Virtual Environments: A Unitary Construct? CyberPsychology & Behavior, 3(3), 327-335. doi:10.1089/10949310050078760Baumann, S., Neff, C., Fetzick, S., Stangl, G., Basler, L., Vereneck, R., & Schneider, W. (2003). A Virtual Reality System for Neurobehavioral and Functional MRI Studies. CyberPsychology & Behavior, 6(3), 259-266. doi:10.1089/109493103322011542Maertens, M. (2008). Retinotopic activation in response to subjective contours in primary visual cortex. Frontiers in Human Neuroscience, 2, 1-7. doi:10.3389/neuro.09.002.2008Baumgartner, T., Valko, L., Esslen, M., & Jäncke, L. (2006). Neural Correlate of Spatial Presence in an Arousing and Noninteractive Virtual Reality: An EEG and Psychophysiology Study. CyberPsychology & Behavior, 9(1), 30-45. doi:10.1089/cpb.2006.9.30Belliveau, J., Kennedy, D., McKinstry, R., Buchbinder, B., Weisskoff, R., Cohen, M., … Rosen, B. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032), 716-719. doi:10.1126/science.1948051Born, R. T., & Bradley, D. C. (2005). STRUCTURE AND FUNCTION OF VISUAL AREA MT. Annual Review of Neuroscience, 28(1), 157-189. doi:10.1146/annurev.neuro.26.041002.131052Canli, T., Zhao, Z., Desmond, J. E., Kang, E., Gross, J., & Gabrieli, J. D. E. (2001). An fMRI study of personality influences on brain reactivity to emotional stimuli. Behavioral Neuroscience, 115(1), 33-42. doi:10.1037/0735-7044.115.1.33Clemente, M., Rodríguez, A., Rey, B., Rodríguez, A., Baños, R. M., Botella, C., … Ávila, C. (2011). Analyzing the Level of Presence While Navigating in a Virtual Environment during an fMRI Scan. Lecture Notes in Computer Science, 475-478. doi:10.1007/978-3-642-23768-3_61(Bud) Craig, A. D. (2009). How do you feel — now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59-70. doi:10.1038/nrn2555Dilger, S., Straube, T., Mentzel, H.-J., Fitzek, C., Reichenbach, J. R., Hecht, H., … Miltner, W. H. R. (2003). Brain activation to phobia-related pictures in spider phobic humans: an event-related functional magnetic resonance imaging study. Neuroscience Letters, 348(1), 29-32. doi:10.1016/s0304-3940(03)00647-5Dodds, C. M., Morein-Zamir, S., & Robbins, T. W. (2010). Dissociating Inhibition, Attention, and Response Control in the Frontoparietal Network Using Functional Magnetic Resonance Imaging. Cerebral Cortex, 21(5), 1155-1165. doi:10.1093/cercor/bhq187Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598-601. doi:10.1038/33402Flach, J. M., & Holden, J. G. (1998). The Reality of Experience: Gibson’s Way. Presence: Teleoperators and Virtual Environments, 7(1), 90-95. doi:10.1162/105474698565550Friston, K. J., Holmes, A. P., Poline, J.-B., Grasby, P. J., Williams, S. C. R., Frackowiak, R. S. J., & Turner, R. (1995). Analysis of fMRI Time-Series Revisited. NeuroImage, 2(1), 45-53. doi:10.1006/nimg.1995.1007GEAKE, J., & HANSEN, P. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage, 26(2), 555-564. doi:10.1016/j.neuroimage.2005.01.035Haldane, M., Cunningham, G., Androutsos, C., & Frangou, S. (2008). Structural brain correlates of response inhibition in Bipolar Disorder I. Journal of Psychopharmacology, 22(2), 138-143. doi:10.1177/0269881107082955Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The Well-Worn Route and the Path Less Traveled. Neuron, 37(5), 877-888. doi:10.1016/s0896-6273(03)00095-3Heeter, C. (1992). Being There: The Subjective Experience of Presence. Presence: Teleoperators and Virtual Environments, 1(2), 262-271. doi:10.1162/pres.1992.1.2.262De Castro, F. (2009). Wiring olfaction: the cellular and molecular mechanisms that guide the development of synaptic connections from the nose to the cortex. Frontiers in Neuroscience. doi:10.3389/neuro.22.004.2009Johnson, P. B., Ferraina, S., Bianchi, L., & Caminiti, R. (1996). Cortical Networks for Visual Reaching: Physiological and Anatomical Organization of Frontal and Parietal Lobe Arm Regions. Cerebral Cortex, 6(2), 102-119. doi:10.1093/cercor/6.2.102Karnath, H.-O. (2005). Awareness of the Functioning of One’s Own Limbs Mediated by the Insular Cortex? Journal of Neuroscience, 25(31), 7134-7138. doi:10.1523/jneurosci.1590-05.2005Koechlin, E. (2003). The Architecture of Cognitive Control in the Human Prefrontal Cortex. Science, 302(5648), 1181-1185. doi:10.1126/science.1088545Lang, P. J., Bradley, M. M., Fitzsimmons, J. R., Cuthbert, B. N., Scott, J. D., Moulder, B., & Nangia, V. (1998). Emotional arousal and activation of the visual cortex: An fMRI analysis. Psychophysiology, 35(2), 199-210. doi:10.1017/s0048577298001991Le Bihan, D., Turner, R., Zeffiro, T. A., Cuenod, C. A., Jezzard, P., & Bonnerot, V. (1993). Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proceedings of the National Academy of Sciences, 90(24), 11802-11805. doi:10.1073/pnas.90.24.11802Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J. (2001). A Cross-Media Presence Questionnaire: The ITC-Sense of Presence Inventory. Presence: Teleoperators and Virtual Environments, 10(3), 282-297. doi:10.1162/105474601300343612Loomis, J. M. (1992). Distal Attribution and Presence. Presence: Teleoperators and Virtual Environments, 1(1), 113-119. doi:10.1162/pres.1992.1.1.113Mellet, E., Laou, L., Petit, L., Zago, L., Mazoyer, B., & Tzourio-Mazoyer, N. (2009). Impact of the virtual reality on the neural representation of an environment. Human Brain Mapping, 31(7), 1065-1075. doi:10.1002/hbm.20917Mishkin, M., & Ungerleider, L. G. (1982). Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural Brain Research, 6(1), 57-77. doi:10.1016/0166-4328(82)90081-xMraz, R., Hong, J., Quintin, G., Staines, W. R., McIlroy, W. E., Zakzanis, K. K., & Graham, S. J. (2003). A Platform for Combining Virtual Reality Experiments with Functional Magnetic Resonance Imaging. CyberPsychology & Behavior, 6(4), 359-368. doi:10.1089/109493103322278736Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking Feelings: An fMRI Study of the Cognitive Regulation of Emotion. Journal of Cognitive Neuroscience, 14(8), 1215-1229. doi:10.1162/089892902760807212Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113. doi:10.1016/0028-3932(71)90067-4Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia, 28(10), 1021-1034. doi:10.1016/0028-3932(90)90137-dPerani, D., Fazio, F., Borghese, N. A., Tettamanti, M., Ferrari, S., Decety, J., & Gilardi, M. C. (2001). Different Brain Correlates for Watching Real and Virtual Hand Actions. NeuroImage, 14(3), 749-758. doi:10.1006/nimg.2001.0872Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research, 133(1), 44-54. doi:10.1007/s002210000399Pine, D. S., Grun, J., Maguire, E. A., Burgess, N., Zarahn, E., Koda, V., … Bilder, R. M. (2002). Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality fMRI Study. NeuroImage, 15(2), 396-406. doi:10.1006/nimg.2001.0988Riva, G., Waterworth, J. A., Waterworth, E. L., & Mantovani, F. (2011). From intention to action: The role of presence. New Ideas in Psychology, 29(1), 24-37. doi:10.1016/j.newideapsych.2009.11.002Rey, B., Alcañiz, M., Tembl, J., & Parkhutik, V. (2009). Brain activity and presence: a preliminary study in different immersive conditions using transcranial Doppler monitoring. Virtual Reality, 14(1), 55-65. doi:10.1007/s10055-009-0141-2Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332-339. doi:10.1038/nrn1651Scheibe, C., Wartenburger, I., Wüstenberg, T., Kathmann, N., Villringer, A., & Heekeren, H. R. (2006). Neural correlates of the interaction between transient and sustained processes: A mixed blocked/event-related fMRI study. Human Brain Mapping, 27(7), 545-551. doi:10.1002/hbm.20199Schuemie, M. J., van der Straaten, P., Krijn, M., & van der Mast, C. A. P. G. (2001). Research on Presence in Virtual Reality: A Survey. CyberPsychology & Behavior, 4(2), 183-201. doi:10.1089/109493101300117884Smith, S. M. (2004). Overview of fMRI analysis. The British Journal of Radiology, 77(suppl_2), S167-S175. doi:10.1259/bjr/33553595Usoh, M., Catena, E., Arman, S., & Slater, M. (2000). Using Presence Questionnaires in Reality. Presence: Teleoperators and Virtual Environments, 9(5), 497-503. doi:10.1162/105474600566989Vanni, S., Tanskanen, T., Seppa, M., Uutela, K., & Hari, R. (2001). Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proceedings of the National Academy of Sciences, 98(5), 2776-2780. doi:10.1073/pnas.041600898Wolf, U., Rapoport, M. J., & Schweizer, T. A. (2009). Evaluating the Affective Component of the Cerebellar Cognitive Affective Syndrome. Journal of Neuropsychiatry, 21(3), 245-253. doi:10.1176/appi.neuropsych.21.3.245Zahorik, P., & Jenison, R. L. (1998). Presence as Being-in-the-World. Presence: Teleoperators and Virtual Environments, 7(1), 78-89. doi:10.1162/10547469856554

    Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases

    Get PDF
    Altres ajuts: Generalitat de Catalunya, Departament de Salut; Generalitat de Catalunya, Departament d'Empresa i Coneixement i CERCA Program; Ministerio de Ciencia e Innovación; Instituto Nacional de Bioinformática; ELIXIR Implementation Studies (CNAG-CRG); Centro de Investigaciones Biomédicas en Red de Enfermedades Raras; Centro de Excelencia Severo Ochoa; European Regional Development Fund (FEDER).Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%)

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    The bilingual and monolingual differences in comprehension processing: An fMRI study

    No full text
    Kovelman et al., (2008) have addressed the neural signature of bilingualism. They considered the left inferior frontal cortex (LIFC, Broca’s area) to be the best candidate. Wartenburger et al., (2003), in the same direction, found that early bilinguals showed higher activation in similar areas for L2 grammatical judgment rather than in semantic, but not late bilinguals. This can be interpreted in terms of the declarative/procedural model of language (Ullman, 2004) where grammatical rules are dependent on implicit knowledge sub served by Broca’s area and basal ganglia. Late L2 acquisition might not rely on the same structures as it would be acquired explicitly. We explore if grammatical and semantic processing in bilinguals differ in L1 too. An fMRI study was conducted where bilinguals and monolinguals performed a grammatical and semantic judgment task. We observed a more extensive activation of the bilingual brain in both judgments. More interestingly, higher activation of LIFC for L1 grammatical jugdments than semantic was found in bilinguals and specially in less proficient. These results are in agreement with those observed for L2 processing, suggesting that bilinguals recruit a more extensive network than monolinguals in L1 too. However, these results question the interpretation based on the declarative/procedimental model

    Differences in neural substrates of comprehension in bilinguals and monolinguals

    No full text
    Introduction With regards to sentence processing in bilingualism, it has been shown that bilinguals activate to a higher extent the left inferior frontal gyrus in syntactic processing when compared to monolinguals. Such differences have been termed as the “neural signature” of bilingualism (Kovelman et al., 2008). However, previous research highlighted the need of distinguishing between grammatical and semantic processes in bilingual sentence comprehension as these two levels have been revealed to differ in the cognitive sub operations that they engage (Wartenburger et al., 2003). The task Forty-three healthy right-handed participants [23 early and high proficient bilinguals in Catalan-Spanish (mean age=23.30) and 20 Spanish monolinguals (mean age=25.10)] were studied. We used a block design including both grammatical and semantic judgement tasks in L1. Sentences were visually presented to both groups. In a grammatical block, sentences were meaningful but could included different types of grammatical violations. For semantic blocks, the sentences were always grammatically correct but could contain semantic violations. The control task consisted of strings of xs of matched lenght.xxx Acquisition and data analyses MR images were collected using a Siemens Avanto 1.5 T scanner (Erlange, Germany). We collected 240 continuous EPI functional volumes (TR = 3000 ms; TE = 50 ms; 35 axial slices). Images analyses were performed using SPM5 software. Preprocessing included realignment, spatial normalization and spatial smoothing (FWHM=8 mm³). In the fixed-effect analysis a full factorial design was set for each subject, modelling each condition separately. The convolution was performed by using the canonical HRF and a t-contrast was defined for each subject as the difference between experimental and control conditions. Results Behavioural analysis showed higher percentage of correct answers for monolinguals than for bilinguals in Control, Semantic and Grammatical conditions. However, differences between groups were not significant (p>0.’05) in any condition. BOLD response was analyzed using one sample t-test for each group (p Bilinguals) did not yield any significant difference. Conclusions Bilinguals activated more brain areas related to language (Wernicke’s area and Broca’s area) that could be considered like a “neural signature” of bilingualism. On the other hand, results neitherdid not show significant differences between semantic and grammatical conditions norneither behavioural differences between groups were found. References Wartenburger I, Heekeren HR, Burchert F, De Bleser R, & Villringer A. (2003). Grammaticality judgments on sentences with and without movement of phrasal constituents- an event-related fMRI study. J Neurolinguistics, 16, 301-314. Kovelman I, Baker SA, & Petitto LA (2008). Bilingual and monolingual brains compared: a functional magnetic resonance imaging investigation of syntactic processing and possible “neural signature” of bilingualism. J Cogn Neurosc, 20, 153-69
    corecore