1,731 research outputs found

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Mock galaxy catalogues for the BOSS Final Data Release

    Get PDF
    We reproduce the galaxy clustering catalogue from the SDSS-III Baryon Oscillation Spectroscopic Survey Final Data Release (BOSS DR11 and DR12) with high fidelity on all relevant scales in order to allow a robust analysis of baryon acoustic oscillations and redshift space distortions. We have generated (6000) 12 288 MultiDark PATCHY BOSS (DR11) DR12 light cones corresponding to an effective volume of ~ 192 000 [h-1 Gpc]3 (the largest ever simulated volume), including cosmic evolution in the redshift range from 0.15 to 0.75. The mocks have been calibrated using a reference galaxy catalogue based on the halo abundance matching modelling of the BOSS DR11 and DR12 galaxy clustering data and on the data themselves. The production follows three steps. First, we apply the PATCHY code to generate a dark matter field and an object distribution including non-linear stochastic galaxy bias. Secondly, we run the halo/stellar distribution reconstruction HADRON code to assign masses to the various objects. This step uses the mass distribution as a function of local density and non-local indicators (i.e. tidal field tensor eigenvalues and relative halo exclusion separation for massive objects) from the reference simulation applied to the corresponding patchy dark matter and galaxy distribution. Finally, we apply the SUGAR code to build the light cones. The resulting MultiDarkPATCHY mock light cones reproduce the number density, selection function, survey geometry, and in general within 1s, for arbitrary stellar mass bins, the power spectrum up to k = 0.3 h Mpc-1, the two-point correlation functions down to a few Mpc scales, and the three-point statistics of the BOSS DR11 and DR12 galaxy samples.Fil: Kitaura, Francisco-Shu. Leibniz-Institut fĂŒr Astrophysik Potsdam; AlemaniaFil: Rodriguez Torres, Sergio A.. Universidad AutĂłnoma de Madrid; España. Consejo Superior de Investigaciones CientĂ­ficas; EspañaFil: Chuang, Chia Hsun. Universidad AutĂłnoma de Madrid; España. Consejo Superior de Investigaciones CientĂ­ficas; EspañaFil: Zhao, Cheng. Tsinghua University; ChinaFil: Prada, Francisco. Consejo Superior de Investigaciones CientĂ­ficas; España. Universidad AutĂłnoma de Madrid; EspañaFil: Gil MarĂ­n, HĂ©ctor. University of Portsmouth; Reino UnidoFil: Guo, Hong. State University of Utah; Estados Unidos. Shanghai Astronomical Observatory; ChinaFil: Yepes, Gustavo. Universidad AutĂłnoma de Madrid. Facultad de Ciencias; EspañaFil: Klypin, Anatoly. Universidad AutĂłnoma de Madrid; España. Consejo Superior de Investigaciones CientĂ­ficas; España. New Mexico State University; Estados UnidosFil: Scoccola, Claudia Graciela. Universidad AutĂłnoma de Madrid; España. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; Argentina. Instituto de Astrof{isica de Canarias; España. Universidad de La Laguna; EspañaFil: Tinker, Jeremy. University of New York; Estados UnidosFil: McBride, Cameron. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Reid, Beth. Lawrence Berkeley National Laboratory; Estados Unidos. University of California at Berkeley; Estados UnidosFil: SĂĄnchez, Ariel G.. Max Planck Institut fĂŒr Extraterrestrische Physik; AlemaniaFil: Salazar Albornoz, Salvador. Max Planck Institut fĂŒr Extraterrestrische Physik; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Grieb, Jan Niklas. Max Planck Institut fĂŒr Extraterrestrische Physik; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Vargas Magana, Mariana. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Cuesta, Antonio J.. Universidad de Barcelona; EspañaFil: Neyrinck, Mark. University Johns Hopkins; Estados UnidosFil: Beutler, Florian. Lawrence Berkeley National Laboratory; Estados UnidosFil: Comparat, Johan. Universidad AutĂłnoma de Madrid; España. Consejo Superior de Investigaciones CientĂ­ficas; EspañaFil: Percival, Will J.. University of Portsmouth; Reino UnidoFil: Ross, Ashley. Ohio State University; Estados Unidos. University of Portsmouth; Reino Unid

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering

    Get PDF
    With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 h−1h^{-1}Mpc). We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift z=0.59z=0.59, to obtain constraints on the Hubble expansion rate H(z)H(z), the angular-diameter distance DA(z)D_A(z), the normalized growth rate f(z)σ8(z)f(z)\sigma_8(z), and the physical matter density Ωmh2\Omega_mh^2. We obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g., ones induced by stars and seeing. We provide accurate measurements {DA(0.59)rs,fid/rs\{D_A(0.59)r_{s,fid}/r_s Mpc\rm Mpc, H(0.59)rs/rs,fidH(0.59)r_s/r_{s,fid} kms−1Mpc−1km s^{-1} Mpc^{-1}, f(0.59)σ8(0.59)f(0.59)\sigma_8(0.59), Ωmh2}\Omega_m h^2\} = {1427±26\{1427\pm26, 97.3±3.397.3\pm3.3, 0.488±0.0600.488 \pm 0.060, 0.135±0.016}0.135\pm0.016\}, where rsr_s is the comoving sound horizon at the drag epoch and rs,fid=147.66r_{s,fid}=147.66 Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g., cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e., CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, ww, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, Ωk\Omega_k, is 0.3 per cent. We do not find deviation from flat Λ\LambdaCDM.Comment: 15 pages, 11 figures. The latest version matches and the accepted version by MNRAS. A bug in the first version has been identified and fixed in the new version. We have redone the analysis with newest data (BOSS DR12

    Tomography of Galactic star-forming regions and spiral arms with the Square Kilometer Array

    Get PDF
    © 2014 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence https://creativecommons.org/licenses/by-nc-sa/3.0/us/. Published by Proceedings of Science http://pos.sissa.it/Very Long Baseline Interferometry (VLBI) at radio wavelengths can provide astrometry accurate to 10 micro-arcseconds or better (i.e. better than the target GAIA accuracy) without being limited by dust obscuration. This means that unlike GAIA, VLBI can be applied to star-forming regions independently of their internal and line-of-sight extinction. Low-mass young stellar objects (particularly T Tauri stars) are often non-thermal compact radio emitters, ideal for astrometric VLBI radio continuum experiments. Existing observations for nearby regions (e.g. Taurus, Ophiuchus, or Orion) demonstrate that VLBI astrometry of such active T Tauri stars enables the reconstruction of both the regions' 3D structure (through parallax measurements) and their internal kinematics (through proper motions, combined with radial velocities). The extraordinary sensitivity of the SKA telescope will enable similar "tomographic mappings" to be extended to regions located several kpc from Earth, in particular to nearby spiral arm segments. This will have important implications for Galactic science, galactic dynamics and spiral structure theories

    Precursors of fatty alcohols in the ISM: Discovery of n-propanol

    Get PDF
    Theories on the origins of life propose that early cell membranes were synthesized from amphiphilic molecules simpler than phospholipids such as fatty alcohols. The discovery in the interstellar medium (ISM) of ethanolamine, the simplest phospholipid head group, raises the question whether simple amphiphilic molecules are also synthesized in space. We investigate whether precursors of fatty alcohols are present in the ISM. For this, we have carried out a spectral survey at 7, 3, 2 and 1 mm toward the Giant Molecular Cloud G+0.693-0.027 located in the Galactic Center using the IRAM 30m and Yebes 40m telescopes. Here, we report the detection in the ISM of the primary alcohol n-propanol (in both conformers Ga-n-C3H7OH and Aa-n-C3H7OH), a precursor of fatty alcohols. The derived column densities of n-propanol are (5.5+-0.4)x10^13 cm^-2 for the Ga conformer and (3.4+-0.3)x10^13 cm^-2 for the Aa conformer, which imply molecular abundances of (4.1+-0.3)x10^-10 for Ga-n-C3H7OH and of (2.5+-0.2)x10^-10 for Aa-n-C3H7OH. We also searched for the AGa conformer of n-butanol (AGa-n-C4H9OH) without success yielding an upper limit to its abundance of <4.1x10^-11. The inferred CH3OH:C2H5OH:C3H7OH:C4H9OH abundance ratios go as 1:0.04:0.006:<0.0004 toward G+0.693-0.027, i.e. they decrease roughly by one order of magnitude for increasing complexity. We also report the detection of both syn and anti conformers of vinyl alcohol, with column densities of (1.11+-0.08)x10^14 cm^-2 and (1.3+-0.4)x10^13 cm^-2, and abundances of (8.2+-0.6)x10^-10 and (9.6+-3.0)x10^-11, respectively. The detection of n-propanol, together with the recent discovery of ethanolamine in the ISM, opens the possibility that precursors of lipids according to theories of the origin of life, could have been brought to Earth from outer space.Comment: 15 pages, 10 figures, accepted for A&

    Dynamical dark energy in light of the latest observations

    Get PDF
    A flat Friedmann-Robertson-Walker universe dominated by a cosmological constant (Λ) and cold dark matter (CDM) has been the working model preferred by cosmologists since the discovery of cosmic acceleration1,2. However, tensions of various degrees ofsignificance are known to be present among existing datasets within the ΛCDM framework3-11. In particular, the Lyman-α forest measurement of the baryon acoustic oscillations (BAO) by the Baryon Oscillation Spectroscopic Survey3 prefers a smaller value of the matter density fraction ΩM than that preferred by cosmic microwave background (CMB). Also, the recently measured value of the Hubble constant, H0 = 73.24 ±1.74 km s-1 Mpc-1 (ref. 12), is 3.4σ higher than the 66.93 ± 0.62 km s-1Mpc-1 inferred from the Planck CMB data7. In this work, we investigate whether these tensions can be interpreted as evidence for a non-constant dynamical dark energy. Using the Kullback-Leibler divergence13 to quantify the tension between datasets, we find that the tensions are relieved by an evolving dark energy, with the dynamical dark energy model preferred at a 3.5σ significance level based on the improvement in the fit alone. While, at present, the Bayesian evidence for the dynamical dark energy is insufficient to favour it over ΛCDM, we show that, if the current best-fit dark energy happened to be the true model, it would be decisively detected by the upcoming Dark Energy Spectroscopic Instrument survey14.PostprintPeer reviewe

    A polymorphic variant of the insulin-like growth factor 1 (IGF-1) receptor correlates with male longevity in the Italian population: a genetic study and evaluation of circulating IGF-1 from the "Treviso Longeva (TRELONG)" study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An attenuation of the insulin-like growth factor 1 (IGF-1) signaling has been associated with elongation of the lifespan in simple metazoan organisms and in rodents. In humans, IGF-1 level has an age-related modulation with a lower concentration in the elderly, depending on hormonal and genetic factors affecting the IGF-1 receptor gene (<it>IGF-1R</it>).</p> <p>Methods</p> <p>In an elderly population from North-eastern Italy (<it>n </it>= 668 subjects, age range 70–106 years) we investigated the <it>IGF-1R </it>polymorphism G3174A (<it>rs2229765</it>) and the plasma concentration of free IGF-1. Frequency distributions were compared using χ<sup>2</sup>-test "Goodness of Fit" test, and means were compared by one-way analysis of variance (ANOVA); multiple regression analysis was performed using JMP7 for SAS software (SAS Institute, USA). The limit of significance for genetic and biochemical comparison was set at α = 0.05.</p> <p>Results</p> <p>Males showed an age-related increase in the A-allele of <it>rs2229765 </it>and a change in the plasma level of IGF-1, which dropped significantly after 85 years of age (85+ group). In the male 85+ group, A/A homozygous subjects had the lowest plasma IGF-1 level. We found no clear correlation between <it>rs2229765 </it>genotype and IGF-1 in the females.</p> <p>Conclusion</p> <p>These findings confirm the importance of the <it>rs2229765 </it>minor allele as a genetic predisposing factor for longevity in Italy where a sex-specific pattern for IGF-1 attenuation with ageing was found.</p

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore