16 research outputs found

    Deletion of delta-like 1 homologue accelerates renal inflammation by modulating the Th17 immune response

    Get PDF
    Preclinical studies have demonstrated that activation of the NOTCH pathway plays a key role in the pathogenesis of kidney damage. There is currently no information on the role of the Delta-like homologue 1 (DLK1), a NOTCH inhibitor, in the regulation of renal damage. Here, we investigated the contribution of DLK1 to experimental renal damage and the underlying molecular mechanisms. Using a Dlk1-null mouse model in the experimental renal damage of unilateral ureteral obstruction, we found activation of NOTCH, as shown by increased nuclear translocation of the NOTCH1 intracellular domain, and upregulation of Dlk2/hey-1 expression compared to wild-type (WT) littermates. NOTCH1 over-activation in Dlk1-null injured kidneys was associated with a higher inflammatory response, characterized by infiltration of inflammatory cells, mainly CD4/IL17A + lymphocytes, and activation of the Th17 immune response. Furthermore, pharmacological NOTCH blockade inhibited the transcription factors controlling Th17 differentiation and gene expression of the Th17 effector cytokine IL-17A and other related-inflammatory factors, linked to a diminution of inflammation in the injured kidneys. We propose that the non-canonical NOTCH ligand DLK1 acts as a NOTCH antagonist in renal injury regulating the Th17-mediated inflammatory response.MINECO | Instituto de Salud Carlos III (ISCIII), Grant/Award Number: PI17/00119; Ministerio de Economia y Competitividad, Grant/Award Number: SAF2015-66107-R; Comunidad Autonoma de Madrid, Grant/Award Number: B2017/ BMD-3751; Fondo Nacional de Desarroll

    Branched-chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation

    Full text link
    Branched‐chain amino acids (BCAA: leucine, isoleucine and valine) are essential amino acids implicated in glucose metabolism and maintenance of correct brain function. Elevated BCAA levels can promote an inflammatory response in peripheral blood mononuclear cells. However, there are no studies analysing the direct effects of BCAA on endothelial cells (ECs) and its possible modulation of vascular function. In vitro and ex vivo studies were performed in human ECs and aorta from male C57BL/6J mice, respectively. In ECs, BCAA (6 mmol/L) increased eNOS expression, reactive oxygen species production by mitochondria and NADPH oxidases, peroxynitrite formation and nitrotyrosine expression. Moreover, BCAA induced pro‐inflammatory responses through the transcription factor NF‐κB that resulted in the release of intracellular adhesion molecule‐1 and E‐selectin conferring endothelial activation and adhesion capacity to inflammatory cells. Pharmacological inhibition of mTORC1 intracellular signalling pathway decreased BCAA-induced pro‐oxidant and pro‐inflammatory effects in ECs. In isolated murine aorta, BCAA elicited vasoconstrictor responses, particularly in pre‐contracted vessels and after NO synthase blockade, and triggered endothelial dysfunction, effects that were inhibited by different antioxidants, further demonstrating the potential of BCAA to induce oxidative stress with functional impact. In summary, we demonstrate that elevated BCAA levels generate inflammation and oxidative stress in ECs, thereby facilitating inflammatory cells adhesion and endothelial dysfunction. This might contribute to the increased cardiovascular risk observed in patients with elevated BCAA blood levels.This study was supported by Ministerio de Economía y Competitividad (MINECO SAF2016‐80305‐P), Instituto de Salud Carlos III (ISCIII) Fondo Europeo de Desarrollo Regional (FEDER) a way to build Europe (PI14/00386, PI14/0041, PIE13/00051, PI13/01488; PI17‐01495, CiberCV, CiberDEM), FP7 grant e‐PREDICE, by the Fundación Renal Iñigo Álvarez de Toledo (FRIAT)/Instituto Reina Sofía de Investigación Nefrológica and from Roche‐IdiPa

    Gremlin Regulates Tubular Epithelial to Mesenchymal Transition via VEGFR2: Potential Role in Renal Fibrosis

    Get PDF
    Chronic kidney disease (CKD) is emerging as an important health problem due to the increase number of CKD patients and the absence of an effective curative treatment. Gremlin has been proposed as a novel therapeutic target for renal inflammatory diseases, acting via Vascular Endothelial Growth Factor Receptor-2 (VEGFR2). Although many evidences suggest that Gremlin could regulate renal fibrosis, the receptor involved has not been yet clarified. Gremlin, as other TGF-β superfamily members, regulates tubular epithelial to mesenchymal transition (EMT) and, therefore, could contribute to renal fibrosis. In cultured tubular epithelial cells Gremlin binding to VEGFR2 is linked to proinflammatory responses. Now, we have found out that in these cells VEGFR2 is also involved in the profibrotic actions of Gremlin. VEGFR2 blockade by a pharmacological kinase inhibitor or gene silencing diminished Gremlin-mediated gene upregulation of profibrotic factors and restored changes in EMT-related genes. Moreover, VEGFR2 inhibition blocked EMT phenotypic changes and dampened the rate of wound healing in response to Gremlin. The role of VEGFR2 in experimental fibrosis was evaluated in experimental unilateral ureteral obstruction. VEFGR2 inhibition diminished the upregulation of profibrotic genes and EMT changes, as well as the accumulation of extracellular matrix proteins, such as fibronectin and collagens in the obstructed kidneys. Notch pathway activation participates in renal damage progression by regulating cell growth/proliferation, regeneration and inflammation. In cultured tubular epithelial cells, Notch inhibition markedly downregulated Gremlin-induced EMT changes and wound healing speed. These results show that Gremlin regulates the EMT process via VEGFR2 and Notch pathway activation, suggesting that the Gremlin/VEGFR2 axis could be a potential therapeutic target for CKD

    Oxidative Stress and Cellular Senescence Are Involved in the Aging Kidney

    Full text link
    Chronic kidney disease (CKD) can be considered as a clinical model for premature aging. However, non‐invasive biomarkers to detect early kidney damage and the onset of a senescent phenotype are lacking. Most of the preclinical senescence studies in aging have been done in very old mice. Furthermore, the precise characterization and over-time development of age-related senes-cence in the kidney remain unclear. To address these limitations, the age-related activation of cellular senescence-associated mechanisms and their correlation with early structural changes in the kidney were investigated in 3- to 18-month-old C57BL6 mice. Inflammatory cell infiltration was ob-served by 12 months, whereas tubular damage and collagen accumulation occurred later. Early activation of cellular-senescence-associated mechanisms was found in 12-month-old mice, character-ized by activation of the DNA-damage-response (DDR), mainly in tubular cells; activation of the antioxidant NRF2 pathway; and klotho downregulation. However, induction of tubular-cell-cycle-arrest (CCA) and overexpression of renal senescent-associated secretory phenotype (SASP) components was only found in 18-month-old mice. In aging mice, both inflammation and oxidative stress (marked by elevated lipid peroxidation and NRF2 inactivation) remained increased. These findings support the hypothesis that prolonged DDR and CCA, loss of nephroprotective factors (klotho), and dysfunctional redox regulatory mechanisms (NRF2/antioxidant defense) can be early drivers of age-related kidney-damage progressionThis research was funded by grants from the Instituto de Salud Carlos III (ISCIII); Fondos FEDER European Union (PI17/00119, PI20/00140; and DTS20/00083 to M.R.-O.; PI18/01133 to A.M.R.); Sara Borrell’ program from Instituto de Salud Carlos III (ISCIII) (grant number CD20/00042 to R.R.R.-D.); Red de Investigación Renal REDINREN: RD16/0009/0003 and RICORS program to RICORS2040 496 (RD21/0005), to M.R.-O., Sociedad Española de Nefrología; “NOVELREN-CM: Enfermedad renal crónica: nuevas Estrategias para la prevención, Diagnóstico y tratamiento” (B2017/BMD3751 to M.R.-O.); “Convocatoria Dinamización Europa Investigación 2019” MINECO (EIN2019-103294 to M.R.-O.); Juan de la Cierva incorporacion grant: IJC2018-035187-I to S.R.-M.; innovation program under the Marie Skłodowska-Curie grant of the European Union’s Horizon 2020 (IMProvePD ID: 812699) to M.R.-O.; and Fundacion Conchita Rabago to L.T.-

    Epigenetic Modulation of Gremlin-1/NOTCH Pathway in Experimental Crescentic Immune-Mediated Glomerulonephritis

    Get PDF
    Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treatment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provides limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory disorders and experimental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs could regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model resembling human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, restoring podocyte numbers. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by modulation of NOTCH pathway. JQ1 inhibited the gene expression of the NOTCH effectors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis

    Statins: Could an old friend help the fight against COVID-19?

    Full text link
    This is the peer reviewed version of the following article: "Statins: Could an old friend help the fight against COVID-19?" . British Journal of Pharmacology (2020): 19 June, which has been published in final form at https://doi.org/10.1111/bph.15166. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versionshe COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has overwhelmed healthcare systems requiring the rapid development of treatments, at least, to reduce COVID-19 severity. Drug repurposing offers a fast track. Here, we discuss the potential beneficial effects of statins in COVID-19 patients based on evidence that they may target virus receptors, replication, degradation, and downstream responses in infected cells, addressing both basic research and epidemiological information. Briefly, statins could modulate virus entry, acting on the SARS-CoV-2 receptors, ACE2 and CD147, and/or lipid rafts engagement. Statins, by inducing autophagy activation, could regulate virus replication or degradation, exerting protective effects. The well-known anti-inflammatory properties of statins, by blocking several molecular mechanisms, including NF-κB and NLRP3 inflammasomes, could limit the "cytokine storm" in severe COVID-19 patients which is linked to fatal outcome. Finally, statin moderation of coagulation response activation may also contribute to improving COVID-19 outcomesThis work and data discussed here were supported by grants from the Instituto de Salud Carlos III (ISCIII) and Fondos FEDER European Union (PI17/00119 and Red de Investigación Renal (REDINREN): RD16/0009, to M.R-O, PI17/01495 to J.E, PI18/01133 to AMR, PI19/00815 to A.O); Comunidad de Madrid (“NOVELREN” B2017/BMD3751 to M.R-O, B2017/BMD-3686 CIFRA2-CM to A.O); Spanish Ministry of Economy and Competitiveness MINECO (DTS17/00203, DTS19/00093) to J,E; “Convocatoria Dinamización Europa Investigación 2019” MINECO (EIN2019-103294 to M.R-O and SR-M); ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071) and DTS18/00032 to A.O; The “Sara Borrell” postdoctoral training program of the ISCIII supported the salary of SR-M (CD19/00021), IMPROVE-PD project (“Identification and Management of Patients at Risk–Outcome and Vascular Events in Peritoneal Dialysis”) funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 812699 to M.R.O

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Increased miR-7641 levels in peritoneal hyalinizing vasculopathy in long-term peritoneal dialysis patients

    Get PDF
    Peritoneal hyalinizing vasculopathy (PHV) represents the cornerstone of long-term peritoneal dialysis (PD), and especially characterizes patients associated with encapsulating peritoneal sclerosis. However, the mechanisms of PHV development remain unknown. A cross sectional study was performed in 100 non-selected peritoneal biopsies of PD patients. Clinical data were collected and lesions were evaluated by immunohistochemistry. In selected biopsies a microRNA (miRNA)-sequencing analysis was performed. Only fifteen patients (15%) showed PHV at different degrees. PHV prevalence was significantly lower among patients using PD fluids containing low glucose degradation products (GDP) (5.9% vs. 24.5%), angiotensin converting enzyme inhibitors (ACEIs) (7.5% vs. 23.4%), statins (6.5% vs. 22.6%) or presenting residual renal function, suggesting the existence of several PHV protective factors. Peritoneal biopsies from PHV samples showed loss of endothelial markers and induction of mesenchymal proteins, associated with collagen IV accumulation and wide reduplication of the basement membrane. Moreover, co-expression of endothelial and mesenchymal markers, as well as TGF-β1/Smad3 signaling activation were found in PHV biopsies. These findings suggest that an endothelial-to-mesenchymal transition (EndMT) process was taking place. Additionally, significantly higher levels of miR-7641 were observed in severe PHV compared to non-PHV peritoneal biopsies. Peritoneal damage by GDPs induce miRNA deregulation and an EndMT process in submesothelial vessels, which could contribute to collagen IV accumulation and PHV.This research was funded by grants from the Instituto de Salud Carlos III (ISCIII) and Fondos FEDER European Union (PI15/00120 to R.S, PI18/00882 to M.A.B, PI17/00119 to M.R.-O. and Red de Investigación Renal (REDINREN): RD16/0009, to R.S and M.R-O); “Convocatoria Dinamización Europa Investigación 2019” MINECO (EIN2019-103294 to M.R.-O.); IMPROVE-PD project (“Identification and Management of Patients at Risk–Outcome and Vascular Events in Peritoneal Dialysis”) funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 812699 to M.R.-O. and M.L-C. Spanish Ministry of Science and Innovation/Fondo Europeo de Desarrollo Regional (MICINN/FEDER) (PID2019-110132RB-I00) to M.L.-C.Peer reviewedPeer reviewe
    corecore