309 research outputs found

    Topology and excited state multiplicity as controlling factors in the carbazole-photosensitized CPD formation and repair

    Get PDF
    Photosensitized thyminethymine (ThyThy) formation and repair can be mediated by carbazole (Cbz). The former occurs from the Cbz triplet excited state via energy transfer, while the latter takes place from the singlet excited state via electron transfer. Here, fundamental insight is provided into the role of the topology and excited state multiplicity, as factors governing the balance between both processes. This has been achieved upon designing and synthesizing different isomers of trifunctional systems containing one Cbz and two Thy units covalently linked to the rigid skeleton of the natural deoxycholic acid. The results shown here prove that the Cbz photosensitized dimerization is not counterbalanced by repair when the latter, instead of operating through-space, has to proceed through-bond. © 2022 The Authors. Published by American Chemical Society

    Clinical outcomes of temporary mechanical circulatory support as a direct bridge to heart transplantation: a nationwide Spanish registry

    Get PDF
    Background: In Spain, listing for high-urgent heart transplantation is allowed for critically ill candidates not weanable from temporary mechanical circulatory support (T-MCS). We sought to analyse the clinical outcomes of this strategy. Methods and results: We conducted a case-by-case, retrospective review of clinical records of 291 adult patients listed for high-urgent heart transplantation under temporary devices from 2010 to 2015 in 16 Spanish institutions. Survival after listing and adverse clinical events were studied. At the time of listing, 169 (58%) patients were supported on veno-arterial extracorporeal membrane oxygenation (VA-ECMO), 70 (24%) on temporary left ventricular assist devices (T-LVAD) and 52 (18%) on temporary biventricular assist devices (T-BiVAD). Seven patients transitioned from VA-ECMO to temporary ventricular assist devices while on the waiting list. Mean time on T-MCS was 13.1 ± 12.6 days. Mean time from listing to transplantation was 7.6 ± 8.5 days. Overall, 230 (79%) patients were transplanted and 54 (18.6%) died during MCS. In-hospital postoperative mortality after transplantation was 33.3%, 11.9% and 26.2% for patients bridged on VA-ECMO, T-LVAD and T-BiVAD, respectively (P = 0.008). Overall survival from listing to hospital discharge was 54.4%, 78.6% and 55.8%, respectively (P = 0.002). T-LVAD support was independently associated with a lower risk of death over the first year after listing (hazard ratio 0.52, 95% confidence interval 0.30–0.92). Patients treated with VA-ECMO showed the highest incidence rate of adverse clinical events associated with T-MCS. Conclusion: Temporary devices may be used to bridge critically ill candidates directly to heart transplantation in a setting of short waiting list times, as is the case of Spain. In our series, bridging with T-LVAD was associated with more favourable outcomes than bridging with T-BiVAD or VA-ECMO

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60∘60^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec⁡ξ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec⁡ξ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Get PDF
    We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.Comment: Accepted for publication by PR

    The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)

    Get PDF
    Contributions of the Pierre Auger Collaboration to the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The NetherlandsComment: 24 proceedings, the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015
    • 

    corecore