1,092 research outputs found
Star Formation and Young Population of the HII Complex Sh2-294
The Sh2-294 HII region ionized by a single B0V star features several infrared
excess sources, a photodissociation region, and also a group of reddened stars
at its border. The star formation scenario in the region seems to be quite
complex. In this paper, we present follow-up results of Sh2-294 HII region at
3.6, 4.5, 5.8, and 8.0 microns observed with the Spitzer Space Telescope
Infrared Array Camera (IRAC), coupled with H2 (2.12 microns) observation, to
characterize the young population of the region and to understand its star
formation history. We identified 36 young stellar object (YSO, Class I, Class
II and Class I/II) candidates using IRAC color-color diagrams. It is found that
Class I sources are preferentially located at the outskirts of the HII region
and associated with enhanced H2 emission; none of them are located near the
central cluster. Combining the optical to mid-infrared (MIR) photometry of the
YSO candidates and using the spectral energy distribution fitting models, we
constrained stellar parameters and the evolutionary status of 33 YSO
candidates. Most of them are interpreted by the model as low-mass (< 4 solar
masses) YSOs; however, we also detected a massive YSO (~9 solar masses) of
Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present
analysis suggests that the Class I sources are indeed younger population of the
region relative to Class II sources (age ~ 4.5 x 10^6 yr). We suggest that the
majority of the Class I sources, including the massive YSOs, are
second-generation stars of the region whose formation is possibly induced by
the expansion of the HII region powered by a ~ 4 x 10^6 yr B0 main-sequence
star.Comment: 12 pages, 7 figures, 2 tables. Accepted for publication in The
Astrophysical Journa
Candidate Coronagraphic Detections of Protoplanetary Disks around Four Young Stars
We present potential detections of H-band scattered light emission around
four young star, selected from a total sample of 45 young stars observed with
the CIAO coronagraph of the Subaru telescope. Two CTTS, CI Tau and DI Cep, and
two WTTS, LkCa 14 and RXJ 0338.3+1020 were detected. In all four cases, the
extended emission is within the area of the residual PSF halo, and is revealed
only through careful data reduction. We compare the observed extended emission
with simulations of the scattered light emission, to evaluate the plausibility
and nature of the detected emission.Comment: 9 Figures, 40 page
Star Formation in the Milky Way. The Infrared View
I present a brief review of some of the most recent and active topics of star
formation process in the Milky Way using mid and far infrared observations, and
motivated by the research being carried out by our science group using data
gathered by the Spitzer and Herschel space telescopes. These topics include
bringing together the scaling relationships found in extragalactic systems with
that of the local nearby molecular clouds, the synthetic modeling of the Milky
Way and estimates of its star formation rate.Comment: 12 pages, 9 figures. To apper in "Cosmic-ray induced phenomenology in
star-forming environments: Proceedings of the 2nd Session of the Sant Cugat
Forum of Astrophysics" (April 16-19, 2012), Olaf Reimer and Diego F. Torres
(eds.
Sky maps without anisotropies in the cosmic microwave background are a better fit to WMAP's uncalibrated time ordered data than the official sky maps
The purpose of this reanalysis of the WMAP uncalibrated time ordered data
(TOD) was two fold. The first was to reassess the reliability of the detection
of the anisotropies in the official WMAP sky maps of the cosmic microwave
background (CMB). The second was to assess the performance of a proposed
criterion in avoiding systematic error in detecting a signal of interest. The
criterion was implemented by testing the null hypothesis that the uncalibrated
TOD was consistent with no anisotropies when WMAP's hourly calibration
parameters were allowed to vary. It was shown independently for all 20 WMAP
channels that sky maps with no anisotropies were a better fit to the TOD than
those from the official analysis. The recently launched Planck satellite should
help sort out this perplexing result.Comment: 11 pages with 1 figure and 2 tables. Extensively rewritten to explain
the research bette
Predicted Colors and Flux Densities of Protostars in the Herschel PACS and SPIRE Filters
Upcoming surveys with the Herschel Space Observatory will yield far-IR
photometry of large samples of young stellar objects, which will require
careful interpretation. We investigate the color and luminosity diagnostics
based on Herschel broad-band filters to identify and discern the properties of
low-mass protostars. We compute a grid of 2,016 protostars in various physical
congurations, present the expected flux densities and flux density ratios for
this grid of protostars, and compare Herschel observations of three protostars
to the model results. These provide useful constraints on the range of colors
and fluxes of protostar in the Herschel filters. We find that Herschel data
alone is likely a useful diagnostic of the envelope properties of young starsComment: Part of HOPS KP papers to the Herschel special A&A issu
The Small-Scale Physical Structure and Fragmentation Difference of Two Embedded Intermediate Mass Protostars in Orion
Intermediate-mass (IM) protostars, the bridge between the very common solar-like protostars and the more massive,
but rarer, O and B stars, can only be studied at high physical spatial resolutions in a handful of clouds. In this paper, we present and analyze the continuum results from an observing campaign at the Submillimeter Array (SMA)
targeting two well-studied IM protostars in Orion, NGC 2071 and L1641 S3 MMS 1. The extended SMA (eSMA)
probes structure at angular resolutions up to 0".2, revealing protostellar disks on scales of ∼200 AU. Continuum flux measurements on these scales indicate that a significant amount of mass, a few tens of M_⊙, is present. Envelope,
stellar, and disk masses are derived using compact, extended, and eSMA configurations and compared against
spectral energy distribution fitting models. We hypothesize that fragmentation into three components occurred
within NGC 2071 at an early time, when the envelopes were less than 10% of their current masses, e.g., <0.5 M.
No fragmentation occurred for L1641 S3 MMS 1. For NGC 2071, evidence is given that the bulk of the envelope
material currently around each source was accreted after the initial fragmentation. In addition, about 30% of the
total core mass is not yet associated to one of the three sources. A global accretion model is favored and a potential
accretion history of NGC 2071 is presented. It is shown that the relatively low level of fragmentation in NGC 2071
was stifled compared to the expected fragmentation from a Jeans argument. Similarly, the lack of fragmentation in
L1641 S3 MMS 1 is likely due to similar arguments
Star formation triggered by HII regions in our Galaxy: First results for N49 from the Herschel infrared survey of the Galactic plane
It has been shown that by means of different physical mechanisms the
expansion of HII regions can trigger the formation of new stars of all masses.
This process may be important to the formation of massive stars but has never
been quantified in the Galaxy. We use Herschel-PACS and -SPIRE images from the
Herschel Infrared survey of the Galactic plane, Hi-GAL, to perform this study.
We combine the Spitzer-GLIMPSE and -MIPSGAL, radio-continuum and sub-millimeter
surveys such as ATLASGAL with Hi-GAL to study Young Stellar Objects (YSOs)
observed towards Galactic HII regions. We select a representative HII region,
N49, located in the field centered on l=30 degr observed as part of the Hi-GAL
Science Demonstration Phase, to demonstrate the importance Hi-GAL will have to
this field of research. Hi-GAL PACS and SPIRE images reveal a new population of
embedded young stars, coincident with bright ATLASGAL condensations. The Hi-GAL
images also allow us, for the first time, to constrain the physical properties
of the newly formed stars by means of fits to their spectral energy
distribution. Massive young stellar objects are observed at the borders of the
N49 region and represent second generation massive stars whose formation has
been triggered by the expansion of the ionized region. Hi-GAL enables us to
detect a population of young stars at different evolutionary stages, cold
condensations only being detected in the SPIRE wavelength range. The far IR
coverage of Hi-GAL strongly constrains the physical properties of the YSOs. The
large and unbiased spatial coverage of this survey offers us a unique
opportunity to lead, for the first time, a global study of star formation
triggered by HII regions in our Galaxy.Comment: 4 pages, 2 figures, accepted by A&A (Special issue on Herschel first
results
A New Method of the Corotation Radius Evaluation in our Galaxy
We propose a new method for determination of the rotation velocity of the
galactic spiral density waves, correspondingly, the corotation radius, ,
in our Galaxy by means of statistical analysis of radial oxygen distribution in
the galactic disc derived over Cepheids. The corotation resonance happens to be
located at kpc, depending on the rate of gas infall on to
the galactic disc, the statistical error being kpc.
Simultaneously, the constant for the rate of oxygen synthesis in the galactic
disc was determined.
We also argue in favour of a very short time-scale formation of the galactic
disc, namely: Gyr. This scenario enables to solve the problem of
the lack of intergalactic gas infall.Comment: 5 pages, 5 figure, 1 tabl
A Search for Star-Disk Interaction Among the Strongest X-ray Flaring Stars in the Orion Nebula Cluster
The Chandra Orion Ultradeep Project observed hundreds of young, low-mass
stars undergoing highly energetic X-ray flare events. The 32 most powerful
cases have been modeled with the result that the magnetic structures
responsible for these flares can be many stellar radii in extent. In this
paper, we model the observed spectral energy distributions of these 32 stars in
order to determine, in detail for each star, whether there is circumstellar
disk material situated in sufficient proximity to the stellar surface for
interaction with the large magnetic loops inferred from the observed X-ray
flares. Our spectral energy distributions span the wavelength range 0.3-8 um
(plus 24 um for some stars), allowing us to constrain the presence of dusty
circumstellar material out to >10 AU from the stellar surface in most cases.
For 24 of the 32 stars in our sample the available data are sufficient to
constrain the location of the inner edge of the dusty disks. Six of these (25%)
have spectral energy distributions consistent with inner disks within reach of
the observed magnetic loops. Another four stars may have gas disks interior to
the dust disk and extending within reach of the magnetic loops, but we cannot
confirm this with the available data. The remaining 14 stars (58%) appear to
have no significant disk material within reach of the large flaring loops.
Thus, up to ~40% of the sample stars exhibit energetic X-ray flares that
possibly arise from a magnetic star-disk interaction, and the remainder are
evidently associated with extremely large, free-standing magnetic loops
anchored only to the stellar surface.Comment: Accepted to the ApJ; 26 pages, 6 tables, 6 figure
Bayesian fitting of Taurus brown dwarf spectral energy distributions
We present derived stellar and disc parameters for a sample of Taurus brown
dwarfs both with and without evidence of an associated disc. These parameters
have been derived using an online fitting tool
(http://bd-server.astro.ex.ac.uk/), which includes a statistically robust
derivation of uncertainties, an indication of pa- rameter degeneracies, and a
complete treatment of the input photometric and spectroscopic observations. The
observations of the Taurus members with indications of disc presence have been
fitted using a grid of theoretical models including detailed treatments of
physical processes accepted for higher mass stars, such as dust sublimation,
and a simple treatment of the accretion flux. This grid of models has been
designed to test the validity of the adopted physical mechanisms, but we have
also constructed models using parameterisation, for example semi-empirical dust
sublimation radii, for users solely interested in parameter derivation and the
quality of the fit. The parameters derived for the naked and disc brown dwarf
systems are largely consistent with literature observations. However, our inner
disc edge locations are consistently closer to the star than previous results
and we also derive elevated accretion rates over non-SED based accretion rate
derivations. For inner edge locations we attribute these differences to the
detailed modelling we have performed of the disc structure, particularly at the
crucial inner edge where departures in geometry from the often adopted vertical
wall due to dust sublimation (and therefore accretion flux) can compensate for
temperature (and therefore distance) changes to the inner edge of the dust
disc. In the case of the elevated derived accretion rates, in some cases, this
may be caused by the intrinsic stellar luminosities of the targets exceeding
that predicted by the isochrones we have adopted.Comment: The paper contains 35 pages with 15 figures and 17 tables. Accepted
for publication in MNRA
- …
