1,159 research outputs found
A technique for conducting seismic refraction experiments on the ocean bed using bottom shots: field procedures
A new approach to scoring systems to improve identification of acute medical admissions that will require critical care
Removal of the intensive care unit (ICU) at the Vale of Leven Hospital mandated the identification and transfer out of those acute medical admissions with a high risk of requiring ICU. The aim of the study was to develop triaging tools that identified such patients and compare them with other scoring systems. The methodology included a retrospective analysis of physiological and arterial gas measurements from 1976 acute medical admissions produced PREEMPT-1 (PRE-critical Emergency Medical Patient Triage). A simpler one for ambulance use (PREAMBLE-1 [PRE-Admission Medical Blue-Light Emergency]) was produced by the addition of peripheral oxygen saturation to a modification of MEWS (Modified Early Warning Score). Prospective application of these tools produced a larger database of 4447 acute admissions from which logistic regression models produced PREEMPT-2 and PREAMBLE-2, which were then compared with the original systems and seven other early warning scoring systems. Results showed that in patients with arterial gases, the area under the receiver operator characteristic curve was significantly higher in PREEMPT-2 (89·1%) and PREAMBLE-2 (84.4%) than all other scoring systems. Similarly, in all patients, it was higher in PREAMBLE-2 (92·4%) than PREAMBLE-1 (88·1%) and the other scoring systems. In conclusion, risk of requiring ICU can be more accurately predicted using PREEMPT-2 and PREAMBLE-2, as described here, than by other early warning scoring systems developed over recent years
Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states
The photonic band dispersion and density of states (DOS) are calculated for
the three-dimensional (3D) hexagonal structure corresponding to a distributed
Bragg reflector patterned with a 2D triangular lattice of circular holes.
Results for the Si/SiO and GaAs/AlGaAs systems determine the optimal
parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of
the multilayer. The DOS is considerably reduced in correspondence with the
overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS
weighted with the squared electric field at a given point) has strong
variations depending on the position. Both results imply substantial changes of
spontaneous emission rates and patterns for a local emitter embedded in the
structure and make this system attractive for the fabrication of a 3D photonic
crystal with controlled radiative properties.Comment: 8 pages, 5 figures; to appear in Phys. Rev.
Statistical Theory of Spin Relaxation and Diffusion in Solids
A comprehensive theoretical description is given for the spin relaxation and
diffusion in solids. The formulation is made in a general
statistical-mechanical way. The method of the nonequilibrium statistical
operator (NSO) developed by D. N. Zubarev is employed to analyze a relaxation
dynamics of a spin subsystem. Perturbation of this subsystem in solids may
produce a nonequilibrium state which is then relaxed to an equilibrium state
due to the interaction between the particles or with a thermal bath (lattice).
The generalized kinetic equations were derived previously for a system weakly
coupled to a thermal bath to elucidate the nature of transport and relaxation
processes. In this paper, these results are used to describe the relaxation and
diffusion of nuclear spins in solids. The aim is to formulate a successive and
coherent microscopic description of the nuclear magnetic relaxation and
diffusion in solids. The nuclear spin-lattice relaxation is considered and the
Gorter relation is derived. As an example, a theory of spin diffusion of the
nuclear magnetic moment in dilute alloys (like Cu-Mn) is developed. It is shown
that due to the dipolar interaction between host nuclear spins and impurity
spins, a nonuniform distribution in the host nuclear spin system will occur and
consequently the macroscopic relaxation time will be strongly determined by the
spin diffusion. The explicit expressions for the relaxation time in certain
physically relevant cases are given.Comment: 41 pages, 119 Refs. Corrected typos, added reference
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Measurement of the Michel Parameters in Leptonic Tau Decays
The Michel parameters of the leptonic tau decays are measured using the OPAL
detector at LEP. The Michel parameters are extracted from the energy spectra of
the charged decay leptons and from their energy-energy correlations. A new
method involving a global likelihood fit of Monte Carlo generated events with
complete detector simulation and background treatment has been applied to the
data recorded at center-of-mass energies close to sqrt(s) = M(Z) corresponding
to an integrated luminosity of 155 pb-1 during the years 1990 to 1995. If e-mu
universality is assumed and inferring the tau polarization from neutral current
data, the measured Michel parameters are extracted. Limits on non-standard
coupling constants and on the masses of new gauge bosons are obtained. The
results are in agreement with the V-A prediction of the Standard Model.Comment: 32 pages, LaTeX, 9 eps figures included, submitted to the European
Physical Journal
A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays
The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where
Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL
detector at LEP. Lambda_b are selected by the presence of energetic Lambda
particles in bottom events tagged by the presence of displaced secondary
vertices. A fit to the momenta of the Lambda particles separates signal from B
meson and fragmentation backgrounds. The measured product branching ratio is
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))%
Combined with a previous OPAL measurement, one obtains
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European
Physical Journal
First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons
We report the first observation of Z/gamma* production in Compton scattering
of quasi-real photons. This is a subprocess of the reaction e+e- to
e+e-Z/gamma*, where one of the final state electrons is undetected.
Approximately 55 pb-1 of data collected in the year 1997 at an e+e-
centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been
analysed. The Z/gamma* from Compton scattering has been detected in the
hadronic decay channel. Within well defined kinematic bounds, we measure the
product of cross-section and Z/gamma* branching ratio to hadrons to be
(0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV,
dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60
GeV, dominated by (e)egamma* production, this product is found to be
(4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo
event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
- …
