759 research outputs found

    Transplanting Iowa Ruffed Grouse

    Get PDF
    Restoration of ruffed grouse (Bonasa umbellus medianus) to southeast Iowa met with limited success. Grouse populations were maintained at low densities 8 years after release, as evidenced by the numbers of drumming males inhabiting Shimek State Forest. Lack of suitable habitat, created by advanced secondary forest succession on state-owned lands, appeared to be the major limiting factor. Techniques for trapping and holding grouse, and the effects of confinement on grouse condition are described

    Juneau, Alaska’s Successful Response to COVID-19: A Case Study of Adaptive Leadership in a Complex System

    Get PDF
    Juneau, Alaska, kept COVID-19 deaths lower than in other similar jurisdictions. We argue that adaptive leadership—the early decisions and actions of Juneau’s leaders, effective communications, and emergent new collaborative structures—in the context of municipal ownership of key assets enabled Juneau’s success. The result of 61 interviews and follow-up research, this case study contributes a better understanding of which institutional design, communication, and collaborative factors mattered in responding to the pandemic. Adaptive leadership provides a better explanation for Juneau’s success than alternatives that focus on its isolation, home-rule status, and socio-economic structure.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This article was funded by the National Science Foundation ( 2028928).Ye

    Factors associated with Anaplasma spp. seroprevalence among dogs in the United States

    Get PDF
    Background Dogs in the United States are hosts to a diverse range of ticks and tick-borne pathogens, including A. phagocytophilum, an important emerging canine and human pathogen. Previously, a Companion Animal Parasite Council (CAPC)-sponsored workshop proposed factors purported to be associated with the infection risk for tick-transmitted pathogens in dogs in the United States, including climate conditions, socioeconomic characteristics, local topography, and vector distribution. Methods Approximately four million test results from routine veterinary diagnostic tests from 2011–2013, which were collected on a county level across the contiguous United States, are statistically analyzed with the proposed factors via logistic regression and generalized estimating equations. Spatial prevalence maps of baseline Anaplasma spp. prevalence are constructed from Kriging and head-banging smoothing methods. Results All of the examined factors, with the exception of surface water coverage, were significantly associated with Anaplasma spp. prevalence. Overall, Anaplasma spp. prevalence increases with increasing precipitation and forestation coverage and decreases with increasing temperature, population density, relative humidity, and elevation. Interestingly, socioeconomic status and deer/vehicle collisions were positively and negatively correlated with canine Anaplasma seroprevalence, respectively. A spatial map of the canine Anaplasma hazard is an auxiliary product of the analysis. Anaplasma spp. prevalence is highest in New England and the Upper Midwest. Conclusions The results from the two posited statistical models (one that contains an endemic areas assumption and one that does not) are in general agreement, with the major difference being that the endemic areas model estimates a larger prevalence in Western Texas, New Mexico, and Colorado. As A. phagocytophilum is zoonotic, the results of this analysis could also help predict areas of high risk for human exposure to this pathogen

    Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer

    Full text link
    Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH

    Student Employment: Linking College and the Workplace

    Get PDF
    The focus of National Student Employment Association (formerly the National Association of Student Employment Administrators, or NASEA) publications has always been on students in transition. From the freshman moving from high school to higher education, to the senior attempting the transition to professional employment and financial independence, we always have explored how students can better accomplish these linking experiences. Student employment is a hybrid, serving as a bridge between work and school, and ultimately, a link between school and full-time work. Student employment links elements of financial aid, career development, academic learning, experiential education, and personal development. Student employment, in all of these ways, is a bridge, moving the student from point A to point B. Because of this variety, any publication on student employment must necessarily speak to diverse themes. We have organized this publication in four sections: an introduction followed by three themed sections.https://digitalcommons.brockport.edu/bookshelf/1000/thumbnail.jp

    Compensatory mutations reducing the fitness cost of plasmid carriage occur in plant rhizosphere communities

    Get PDF
    Plasmids drive bacterial evolutionary innovation by transferring ecologically important functions between lineages, but acquiring a plasmid often comes at a fitness cost to the host cell. Compensatory mutations, which ameliorate the cost of plasmid carriage, promote plasmid maintenance in simplified laboratory media across diverse plasmid-host associations. Whether such compensatory evolution can occur in more complex communities inhabiting natural environmental niches where evolutionary paths may be more constrained is, however, unclear. Here, we show a substantial fitness cost of carrying the large conjugative plasmid pQBR103 in Pseudomonas fluorescens SBW25 in the plant rhizosphere. This plasmid fitness cost could be ameliorated by compensatory mutations affecting the chromosomal global regulatory system gacA/gacS, which arose rapidly in plant rhizosphere communities and were exclusive to plasmid carriers. These findings expand our understanding of the importance of compensatory evolution in plasmid dynamics beyond simplified lab media. Compensatory mutations contribute to plasmid survival in bacterial populations living within complex microbial communities in their environmental niche

    Quantitative Factors Proposed to Influence the Prevalence of Canine Tick-Borne Disease Agents in the United States

    Get PDF
    The Companion Animal Parasite Council hosted a meeting to identify quantifiable factors that can influence the prevalence of tick-borne disease agents among dogs in North America. This report summarizes the approach used and the factors identified for further analysis with mathematical models of canine exposure to tick-borne pathogens

    Perspective:Dietary Biomarkers of Intake and Exposure - Exploration with Omics Approaches

    Get PDF
    While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers and producing robust, reproducible biomarkers that can be used in public health and clinical research

    Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel

    Get PDF
    Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms
    • …
    corecore