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Abstract:  92 

While conventional nutrition research has yielded biomarkers such as doubly labeled water for 93 

energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for 94 

additional, equally robust biomarkers that allow for objective assessment of specific food intake 95 

and dietary exposure. Recent advances in high throughput mass spectrometry (MS) combined 96 

with improved metabolomics techniques and bioinformatic tools provide new opportunities for 97 

dietary biomarker development. In September 2018, the National Institutes of Health organized 98 

a 2-day workshop to engage nutrition and omics researchers and explore the potential of multi-99 

omics approaches in nutritional biomarker research. The current perspective summarizes key 100 

gaps and challenges identified, as well as the recommendations from the workshop that could 101 

serve as a guide for scientists interested in dietary biomarkers research. Topics addressed 102 

included: study designs for biomarker development, analytical and bioinformatic considerations, 103 

and integration of dietary biomarkers with other omics techniques. Several clear needs were 104 

identified, including: larger controlled feeding studies, testing a variety of foods and dietary 105 

patterns across diverse populations, improved reporting standards to support study replication, 106 

more chemical standards covering a broader range of food constituents and human metabolites, 107 

standardized approaches for biomarker validation, comprehensive and accessible food 108 

composition databases, a common ontology for dietary biomarker literature and methodologic 109 

work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams 110 

with appropriate expertise are critical to moving forward the field of dietary biomarkers and 111 

producing robust, reproducible biomarkers that can be used in public health and clinical 112 

research.   113 

Key words: Dietary biomarkers, dietary intervention studies, diet, nutrition, metabolomics  114 

 115 

 116 



6 
 

Abbreviations used:  117 

4DFR, 4-day Food Record; AUROC, Area Under the ROC curve; BFI, Biomarkers of Intake; 118 

CIR, Carbon Isotope Ratio; CFS, controlled feeding studies; DBS, Dry blood spot, DLW, Doubly 119 

Labelled Water; DPB, Dietary Pattern Biomarkers; FFQ, Food Frequency Questionnaires; FCIB, 120 

Food Component Intake Biomarkers; FoodBall, Food Biomarker Alliance; FGF-21, fibroblast 121 

growth factor-21; GC, Gas Chromatography; GC-C-IRMS, gas chromatography-combustion-122 

isotope ratio mass spectrometry; HILIC, Hydrophilic Interaction Chromatography; IRMS, Isotope 123 

Ratio Mass Spectrometry; LC, Liquid Chromatography; Metlin, Metabolomics database; MoNA, 124 

Mass bank of North America; MS, Mass Spectrometry; MWAS, Metabolome-wide association 125 

studies; NIR, Nitrogen Isotope Ratio; NPAAS, Nutrition and Physical Activity Association Study; 126 

NMR, Nuclear Magnetic Resonance spectroscopy; RP, Reverse Phase Chromatography; ROC, 127 

Receiver Operating Characteristic Curve; SIR, Stable Isotope Ratio. 128 

 129 

  130 



7 
 

Introduction 131 

 132 
 Prevailing dietary intake assessment methods [e.g., food frequency questionnaires 133 

(FFQ)] rely heavily on self-reported dietary recall and have a variety of systematic and random 134 

measurement errors. A systematic underreporting of dietary intake, especially of total calories 135 

and absolute amounts of macronutrients, in weight-loss trials has been well documented (1). 136 

This problem is further exacerbated by the increasing prevalence of ‘ready-to-eat meals’ in the 137 

Western diet, with incomplete ingredient lists and inability of the participants to complete the 138 

cumbersome and complicated dietary questionnaires. In addition, imperfect or incomplete food 139 

composition databases can lead to inaccuracies, when food intake data are converted to the 140 

corresponding nutrient intake data. Finally, differences in individual metabolism, due to genetics 141 

or the gut microbiome, add complexity to intake measurements. Ideally, self-reported dietary 142 

intake information should be independently validated against a biological or chemical marker 143 

that provides an accurate measure of the dietary intake and exposure. For example, candidate 144 

biomarkers such as alkyl resorcinols, for measuring wheat and rye intake, are beginning to be 145 

employed in epidemiologic studies (2). However, such objective markers of intake are limited to 146 

few nutrients and do not exist for most foods and dietary patterns.   147 

 Recent advances in high throughput mass spectrometry (MS) and nuclear magnetic 148 

resonance spectroscopy (NMR) combined with improved metabolomic, genomic and 149 

metagenomic techniques are now making it possible to identify new and improved dietary 150 

biomarkers. Several studies have demonstrated the feasibility of this combined multi-omic 151 

approach (3-5).  In order to explore the potential of multi-omics approaches in dietary biomarker 152 

development, and to identify related challenges and approaches to address them, the National 153 

Institutes of Health (NIH) organized a workshop on “Omics Approaches to Nutritional 154 

Biomarkers” from September 26-27, 2018 in N. Bethesda, MD. This workshop engaged nutrition 155 

and omics researchers from the US, Canada, and several countries in Europe, all of whom 156 
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participated in scientific presentations and focused breakout sessions to discuss various 157 

aspects of dietary biomarker development.   158 

Table 1 presents a summary of the challenges and the resulting recommendations from 159 

the workshop. Each challenge is discussed in greater detail below. The recommendations are 160 

intended to serve as a guide for scientists wishing to identify, develop, validate or use dietary 161 

biomarkers in their research programs.    162 

 163 

Dietary Biomarker Definitions and Their Utility in Nutrition Research 164 

A dietary biomarker enables an objective measure of either dietary intake, its impact on 165 

host physiology and modify disease risk (6). Following a broader paradigm for biomarker utility, 166 

diet-related biomarkers are typically classified into 3 groups: 1) exposure biomarkers, 2) 167 

susceptibility markers and 3) outcome biomarkers. An exposure biomarker provides an 168 

objective measure of dietary intake of a particular food or nutrient (7). Susceptibility biomarker 169 

provides information about resilience or susceptibility to effects caused by food components, 170 

such as susceptibility to iron overload from meat consumption. In contrast, an outcome 171 

biomarker is used to assess how physiologic and clinical outcomes are affected by nutrient 172 

exposures (8). In addition to this “classical” set of biomarkers, several other dietary biomarker 173 

classification schemes have also emerged in the field of nutrition, depending on how a 174 

biomarker changes in relation to intake and length of exposure (6, 9).   175 

No single classification scheme covers all the aspects of dietary biomarker functions and 176 

features (9). The same compound may be classified in different categories depending on the 177 

purpose of use. For example, total plasma homocysteine concentrations indicate folate status 178 

and serve both as a marker of nutrient status and a biomarker of treatment response in 179 

response to folate supplementation (10). Most of these biomarker classification schemes 180 

assume a unidirectional interaction, with specific dietary components impacting physiological 181 

systems. However, it is increasingly recognized that the relationship between dietary 182 
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components and physiological systems is bidirectional. In fact, dietary components impact the 183 

host’s physiology which, in turn impacts how these dietary substances are metabolized (Figure 184 

1). Moreover, the food-host metabolic interaction is, embedded in a broader cultural and 185 

environmental system that influences the type and extent of food exposure and impact the 186 

metabolic end-products (i.e., biomarkers) detectable in human biospecimens. 187 

The application of metabolomics allows a better characterization of this bidirectional 188 

relationship between diet and physiology enabling the measurement of both nutrient and non-189 

nutrient metabolites that could serve as candidate biomarkers (11). However, non-nutrient 190 

markers are not well integrated in the current paradigm of biomarker classifications and no 191 

common biomarker ontology can address all these classifications. In recognition of these 192 

challenges, Gao et al. developed a detailed dietary biomarker classification framework that 193 

integrates both nutrient and non-nutrient markers from food components (9).   194 

Under this new classification scheme, exposure biomarkers (which may be single 195 

biomarkers or combinations of multiple biomarkers) are further classified into food component 196 

intake biomarkers (FCIBs); biomarkers of food intake (BFIs) and dietary pattern biomarkers 197 

(DPBs). FCIBs are typically metabolites of chemicals present in different foods and include both 198 

nutrients and non-nutrients. BFIs, on the other hand are associated with a given food type or 199 

food group and mostly consist of non-nutrients, such as proline betaine for citrus fruit 200 

consumption. DPBs are used to distinguish between different dietary regimens such as 201 

Mediterranean, Western or Nordic diet patterns. DPBs can include both FCIB and BFI markers 202 

from a variety of foods found in a specific dietary pattern. This new type of diet-related 203 

biomarker classification scheme appears to offer both breadth and flexibility as it allows the 204 

same markers to be used for a variety of different purposes (9). 205 

   Currently only a few reliable intake biomarkers are known. These include 24-h urinary 206 

nitrogen for protein intake, doubly-labeled water (DLW) for total energy expenditure 207 

measurements and 24-h urinary sodium and potassium for sodium/potassium intake. 208 
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Unfortunately, methods such as DLW analysis are very expensive, while 24-h urinary nitrogen 209 

or urinary sodium and potassium measurements are too cumbersome for regular participant 210 

compliance, to be employed in large studies (12).  211 

 One approach that appears to be particularly promising for finding biomarkers of 212 

macronutrient intake is the use of isotope ratio mass spectrometry (IRMS) (13). Naturally 213 

occurring differences in the stable isotope ratio (SIR) of lighter elements, among foods such as 214 

carbon (13C vs. 12C; measured as δ13C) and nitrogen (15N vs. 14N measured as δ15N) are reliably 215 

incorporated into tissues and can be measured by IRMS. One of the advantages of this method 216 

is that SIRs are very stable and can be measured in a variety of biological specimens, including 217 

blood, hair and toenails. Biomarkers for macronutrient food components such as carbohydrates 218 

and protein have been explored using stable isotope ratio analysis (14-16). 219 

 Another approach is MS-based metabolomics, which is opening the door to measuring 220 

both micronutrient and non-nutrient biomarkers to reliably predict food intake.  For example, the 221 

Phenol-Explorer database contains information more than 500  non-nutrient plant polyphenols 222 

that are specific for a particular foods or food groups (17). Using standard metabolomic methods 223 

and the Phenol-Explorer database to annotate polyphenol metabolites in urine, it was possible 224 

to measure over 80 polyphenol metabolites in 24-h urine samples and to identify good 225 

predictors of intake from some of their main food sources such as citrus fruit, coffee, tea and 226 

wine as estimated with 24-h dietary records (18). More recently, using a targeted assay for 34 227 

dietary polyphenols measured in urine, it was possible to study variations of urinary excretion 228 

according to geographical variations of the diet in four different countries enabling the 229 

identification of those phenolic compounds most strongly associated with intake of 110 plant-230 

derived food groups (19). A recent study employed a non-nutrient biomarker alkylresorcinol 231 

metabolite in plasma for whole-grain consumption, to demonstrate its protective effect on the 232 

risk for ischemic stroke, demonstrating their potential clinical utility (2). These examples 233 
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illustrate that metabolomics when combined with the right kinds of databases, can be used to 234 

identify some useful dietary biomarkers.  235 

 236 

Approaches to Studying Biomarkers  237 

Study Designs 238 

Dietary intake biomarker development is best approached as an iterative process, 239 

involving a well-integrated methodologic strategy from biomarker discovery through validation.  240 

Biomarker development should also rely on sufficiently robust study designs to identify 241 

candidate biomarkers that subsequently can be successfully validated (20). While controlled 242 

feeding studies (CFS) are particularly informative for both biomarker discovery and validation, 243 

other study designs may be employed to capture the characteristics of dietary variation and 244 

identify candidate dietary biomarkers for a wide diversity of foods.   245 

 Cross-sectional studies are routinely used for initial dietary biomarker exploration for 246 

capturing the continuous distribution of dietary constituents in the habitual diets, including food 247 

groups or of dietary patterns (7). Key challenges of using cross-sectional studies to discover 248 

dietary biomarkers lie in the limitations of common dietary assessment instruments such as 249 

dietary recalls, food diaries, and FFQs (21). Additional challenges relate to measurement errors 250 

in dietary self-reporting (22), the inadequacies of food-composition tables, and the limited 251 

generalizability of diet-biomarker associations to other populations. Most reported candidate 252 

dietary biomarkers arise from foods that are routinely consumed and potentially more accurately 253 

recalled by participants (23, 24). In contrast, foods that are consumed infrequently are often 254 

difficult to capture with a recall or an FFQ and typically will result in the sporadic appearance of 255 

measurable biomarkers in blood or urine. In such cases, cross-sectional studies may be 256 

ineffective to identify such biomarkers, unless they have unusually long half-lives. These 257 

biomarkers may be less easily identified and would likely be among the more lipophilic 258 
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metabolites (7). Such biomarkers may not effectively replace traditional self-report dietary 259 

assessment methods of longer-term exposure, but their integration with dietary intake data may 260 

provide a more accurate assessment of exposure.  261 

 In contrast to cross-sectional studies, which are often used for dietary biomarker 262 

discovery, CFS are primarily used to evaluate the effects of diet on biological and physiological 263 

processes in humans. Nonetheless, feeding known amounts of specific foods or nutrients to 264 

study participants also provides an opportunity to evaluate biomarkers of dietary exposure (25). 265 

Typically, CFS use the same standardized menus for all participants, thereby reducing the 266 

variation in nutrient intake and the variance introduced by food type, as well as by the handling, 267 

storage, preparation, and processing of the food. These studies permit the testing of several 268 

factors such as the magnitude of consumption and duration of feeding (e.g., short-term vs. long-269 

term), and can provide rich data on biomarker nutrikinetic and nutridynamic properties, similar to 270 

drug metabolism (26, 27). CFS also allow the assessment of metabolite variability due to host 271 

physiology, the type of intervention (e.g., dietary component, food, dietary pattern), the 272 

biomarker performance, as well as when and how often the samples should be collected. 273 

 In CFS, dietary constituents or foods may be administered at the same dose to all 274 

participants (28), various doses to provide a range of exposures (29), or doses based on body 275 

weight (30). These diets also depart from participants’ habitual intake, and consequently need 276 

adequate duration for biomarker equilibration. An alternative to a set-menu CFS is a variable-277 

menu CFS that preserves the normal variation in nutrient and food consumption at the individual 278 

level in the study population. This approach requires individualized menu plans for each 279 

participant that mimic their habitual food intake as estimated by using a 4-day food record 280 

(4DFR) and adjusted for energy requirements, on the basis of calibrated energy estimates and 281 

standard energy estimating equations (31).  282 

 To date, most CFS have been conducted for shorter durations, with small sample sizes 283 

and a limited capacity to capture interpersonal heterogeneity. In addition, these studies are 284 



13 
 

often expensive and laborious to conduct, thereby necessitating several methodological 285 

compromises (limiting the sample size, reducing the study duration, etc.) that may potentially 286 

affect the final study results. There is no clear consensus on the choice of feeding study designs 287 

or sample sizes needed for dietary biomarker development and validation. Recently there have 288 

been attempts to combine a variety of study designs such as crossover, controlled feeding and 289 

cross-sectional studies for biomarker explorations from discovery phase to testing them in free-290 

living populations on habitual diets (32, 33). The final design depends, in large part, on the 291 

specific questions being addressed. 292 

 When substantial information is available on certain biomarkers, there may be no need 293 

to start from the beginning of the biomarker discovery process. Small, short-term feeding 294 

studies that yield candidate biomarkers may be followed by studies that characterize biomarker 295 

time and dose-response. Likewise, validation and testing of biomarker performance may be 296 

done in separate cohorts, and the process may be repeated with necessary corrections, until an 297 

optimal biomarker performance is achieved.  298 

 The replication of initial biomarker studies in different populations is often necessary to 299 

generalize the results, to accommodate population heterogeneity, and to properly account for 300 

food choice diversity and dietary patterns. Ideally, the first validation study should be conducted 301 

in a similar population to the initial discovery cohort, favoring repeated measures to minimize 302 

intra-person variation in biomarker measures. Existing large cohorts, such as the Women’s 303 

Health Initiative, the Framingham Health Study, and the Nurses’ Health Study can be leveraged 304 

for large validation studies. However, it is important to recognize the limitations of the dietary 305 

assessment methods and the bio-sampling protocols used in these types of studies. 306 

Collaborative multi-center feeding studies using habitual diet feeding study designs such as the 307 

one employed by the Nutrition and Physical Activity Association Study (NPAAS) provide an 308 

excellent opportunity for recruiting diverse populations and exploring several nutritional factors 309 

and candidate biomarkers (34). Citizen science projects, such as the American Gut Project (35) 310 
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may also be useful to validate candidate biomarkers because they rapidly generate large 311 

sample sizes, involve broad national and international participation, and help to capture 312 

biomarkers of more prolonged exposure to a particular diet.  313 

 Criteria such as high sensitivity and high specificity for the dietary intake of interest are 314 

fundamental to good biomarkers that can be quantified in terms of the AUROC (area under the 315 

receiver operating characteristic curve). In addition, a potential food or diet intake biomarker 316 

should be able to explain a sizeable fraction of the feeding study variation in the given diet. The 317 

AUROCs allow setting a cut off value for a given biomarker, ranging from 0.5 with random 318 

association to 1.0 with strong association between the biomarker and dietary consumption and 319 

rely on the continuous performance of the biomarker, on a binary outcome (36). The specific cut 320 

point to be met in applying these criteria may depend on the context of the feeding study. It may 321 

also have to be adjusted to reflect the accuracy of estimated feeding study intake (e.g. accuracy 322 

of food composition databases), as well as the study duration and other aspects of the feeding 323 

study design. Investigators proposing novel biomarkers need to provide convincing evidence of 324 

a close correspondence between the actual intake and the biomarker estimated intake, rather 325 

than simply demonstrating a positive correlation between the two. While the AUROC are useful 326 

for dietary biomarker research; their utility highly depends on the availability of good gold 327 

standard markers with which, they can be compared for their classification (36). 328 

 329 

Biologic sampling 330 

Regardless of the study design, careful consideration of the types of biological samples 331 

collected and analyzed is fundamental to ensuring meaningful outcomes. In terms of dietary 332 

biomarkers, urine appears to provide better metabolite coverage compared to plasma, due to 333 

the relative lack of interfering proteins and the fact that many dietary biomarkers are in higher 334 

concentrations in urine (11). Several factors impact the choice of biospecimen matrix for dietary 335 

biomarkers. Different specimens may yield different candidate biomarkers due to their unique 336 



15 
 

physiological origins or their different duration of exposure. Specimens such as saliva and sweat 337 

may provide insight on short-term dietary exposures, whereas red blood cells (RBCs) better 338 

capture medium-term exposure (11, 37, 38), while toenails (39) and hair appear to be promising 339 

matrices for long-term exposures (40, 41). Assessment of biomarkers in more than one matrix 340 

(both plasma and urine) will also provide information on the distribution and dynamic range of 341 

biomarkers in the system and their half-lives (11).   342 

Archived biospecimens from well-conducted dietary interventions are potentially very 343 

useful resources for biomarker discovery and validation. However, precise information on the 344 

stability of certain dietary biomarkers upon storage, sample handling practices, especially for 345 

multi-site studies is important to determine potential confounders that contribute to metabolite 346 

variability. Currently, there are several large repositories for plasma and serum (42). 347 

Unfortunately, there are not many cohort studies with repositories containing urine samples. 348 

While urine is often the preferred biomatrix for dietary biomarker studies, it is also important to 349 

remember that many useful dietary biomarkers have been identified in plasma, although sample 350 

collection requires trained phlebotomists (7).  Indeed, the dietary metabolites with the strongest 351 

food correlations in population studies tend to replicate in both blood and urine and predict 352 

habitual diets (24). For this reason, it is still useful to expand dietary biomarker studies in blood-353 

based (plasma) specimens. Overall, the lack of appropriately collected, publicly accessible 354 

repositories of specimens from intervention and cross-sectional studies represents a continuing 355 

impediment to dietary biomarker discovery and development. Certainly, encouraging the long-356 

term storage of biospecimens from completed feeding studies will expedite the biomarker 357 

discovery and development process.  358 

There is a critical need to standardize specimen collection and sample processing 359 

protocols to ensure greater reproducibility, comparability and generalizability across studies 360 

(43). For instance, Lloyd et al. conducted a systematic validation of biomarkers of habitual citrus 361 

fruit intake and demonstrated that both spot and overnight fasting urine samples provide a good 362 
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correlation with FFQ data (44). Garcia-Perez et al., explored the timing of urine collection and 363 

compared the quantification of biomarkers in spot urine versus 24-h urine samples (43).  364 

Although repeated samples are highly desirable for accurate quantitative measurement, 365 

single samples may also be reasonably informative, especially for frequently consumed foods 366 

(45). This is especially true for biomarkers showing good reproducibility over time, which are 367 

well suited for prospective studies involving larger cohorts (45, 46). Furthermore, sample 368 

handling (standing time, storage temperature, and freeze/thaw cycles) affects many 369 

metabolites, which obviously affects the robustness of any identified metabolite biomarkers. 370 

However, if samples are handled consistently then biomarker-outcome associations (e.g., in 371 

nested case-control studies) can still perform well. Nonetheless, standardized sample handling 372 

practices should be encouraged. 373 

The development of new sampling techniques is also becoming important to enable 374 

more efficient, cost-effective sample collection and better coverage in larger cohort studies. This 375 

is particularly important for studies with geographically isolated cohorts (47). For example, dried 376 

blood spots (DBS) are proving to be an inexpensive method for sample collection and storage 377 

and require minimal specialized equipment and offer several advantages including convenient 378 

transportation (48). Novel gastro-intestinal (GI) tract sampling methods are emerging which may 379 

identify novel dietary biomarkers related to intake and food microbial metabolism (49). 380 

Advances in wearable technology that can continuously monitor metabolites or allow intermittent 381 

sampling will likely complement and expedite the biomarker development process. 382 

 383 

Analytical and Statistical Considerations in Biomarker Development 384 

Analytical and Technological Issues 385 

High throughput, untargeted metabolomics approaches have revolutionized dietary 386 

biomarker development, allowing unbiased interrogation of both nutrients and non-nutrients. 387 

Several analytical methods including NMR, MS combined with liquid chromatography (LC) and 388 
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gas chromatography (GC) have been used for dietary biomarker research. These methods differ 389 

in their sensitivity, sample processing requirements and metabolite coverage. NMR is a robust, 390 

relatively unbiased, inherently quantitative method that allows novel metabolite identification and 391 

requires little sample processing. However, NMR suffers from low sensitivity, enabling detection 392 

and/or quantification of 30-100 different, more abundant metabolites in a given biological 393 

sample. GC-MS is ideal for detecting a variety of nutrients (amino acids, sugars, organic acids, 394 

steroids, fatty acids and volatile metabolite analysis) and it is sufficiently sensitive to detect up to 395 

300 different chemicals in certain biomatrices. However, GC-MS requires extensive sample 396 

work-up and sample derivatization, making it more time consuming and more difficult to quantify 397 

compounds than NMR. High resolution LC-MS is a highly sensitive technique that allows the 398 

detection of up to 10,000 features and the identification of between 400-1500 different 399 

chemicals depending on the platform and methodology (targeted vs. untargeted). LC-MS is 400 

particularly suitable for detecting non-nutrient metabolites that occur in very low concentrations. 401 

As a result, it is gaining popularity as the preferred platform in both metabolomics and dietary 402 

biomarker studies. One of the limitations of LC-MS is that no single LC-system can cover all 403 

metabolite classes. Hydrophilic interaction chromatography (HILIC) typically must be used to 404 

separate more polar metabolites, reversed phase chromatography (RP) must be used to 405 

analyze neutral and nonpolar metabolites and chemical derivatization may be required to detect 406 

lower-abundance metabolites. While obtaining relative quantitation of compounds using LC-MS 407 

is straightforward and typical in metabolomics, determining the absolute concentration of 408 

compounds is more difficult and requires expensive isotopically labeled standards as well as 409 

multi-point calibration curves. Ideally, data from a variety of metabolomics platforms should be 410 

interrogated for discovering and/or quantifying candidate dietary biomarkers of specific dietary 411 

exposures. 412 

Inter-laboratory reproducibility of untargeted LC-MS metabolomics data is another 413 

challenge and is heavily influenced by the instrument type and design. Nevertheless, Cajka et 414 
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al. have recently shown that nine different mass spectrometers can give rise to nearly identical 415 

results for identical biological samples, if detection saturation is avoided (50). Metabolite 416 

identification, coverage and reproducibility are also influenced by experimental conditions that 417 

include sample processing, storage, mode of detection, instrument run and choice of data 418 

reduction methods employed. No standardized and universally accepted protocols and pipelines 419 

exist for untargeted LC-MS-based metabolomics. Furthermore, LC-MS methodologies from 420 

individual labs are not freely shared among the community, further reducing confidence and 421 

reproducibility. The variability can be minimized by adopting appropriate quality control 422 

measures such as proper blanks, controls and standards in the experimental runs. There are 423 

now efforts within the metabolomics community to develop such standards and protocols to 424 

improve reliability and reduce variability within and across studies. It is also important to adopt 425 

the use of pooled reference samples (such as standard reference materials), to adjust for 426 

instrumental differences and batch variations over time. To improve the quality of data 427 

processing and metabolite identification, there is a critical need for sharing the raw data 428 

including quality control (QC) measures and blanks for data processing. Inter-lab comparison of 429 

assays, with appropriate standards, should be encouraged to ensure cross-validation of assays.  430 

 431 

Data Analysis and Metabolite Identification for Biomarker Discovery 432 

While thousands of “features” can be detected on untargeted LC- MS-based 433 

metabolomics platforms, the actual identification of metabolites continues to be a major 434 

challenge. Raw data from MS instruments must undergo several processing steps before they 435 

can be statistically analyzed and compared. These steps involve the removal of adducts, peak 436 

identification and peak alignment, spectral deconvolution, compound identification (via matching 437 

to an MS/MS spectrum) and multivariate statistical analysis. There are many software tools 438 

including commercial packages that offer a wide range of excellent features but they all differ in 439 

their algorithms for picking MS peaks (51-53). As a result, there is only a 50-70% overlap 440 
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between the MS peaks detected by different packages, from the same raw data files using 441 

identical or near identical settings (54). Clearly, more standardization of the data analysis 442 

pipelines and peak picking algorithms is needed. 443 

Compound identification which is the next step after spectral alignment and peak 444 

detection typically involves the comparison of MS/MS spectral features with well-curated MS 445 

databases. However, there is considerable diversity in the types of MS instruments and the 446 

types of MS spectra that can be collected on these instruments. As a result, it is often difficult to 447 

find a comprehensive MS database that fits with the type of MS spectra being collected other 448 

than the instrument-specific database provided by the vendor. Because the vendor-specific 449 

databases are often costly or do not cover the compounds of interest, there is a growing need 450 

for comprehensive, open-access MS databases that provide MS spectra for multiple platforms 451 

and which support broad metabolite identification activities. One such database is the 452 

MassBank of North America (MoNA) (55). MoNA is an open-access MS database that actively 453 

harvests and displays a large portion of the public MS/MS fragment spectral data for 454 

metabolites into a single, web-accessible resource containing over 130,000 experimental 455 

MS/MS spectral records from authentic compounds (including many food compounds) and 456 

nearly 140,000 predicted spectra generated for lipids.   457 

Several other public databases also contain large, freely available collections of 458 

reference metabolite MS/MS spectral data covering multiple MS platforms (56-58). However, 459 

these databases are also populated with a large fraction (sometimes >80%) of predicted spectra 460 

commonly generated using programs such as MetFrag (59), CFM-ID (60), or Mass Frontier 461 

(61). While still useful, these predicted MS spectra are not as accurate nor as correct as 462 

experimentally collected MS spectra. Indeed, the dearth of experimental MS spectra collected 463 

for authentic compounds continues to be a major challenge in metabolite annotation. Recently 464 

an effort known as the Food Compound Exchange (FoodComEx) has been launched to help 465 

address this problem (62). This community-driven concept, which was sponsored by the Food 466 
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Biomarker Alliance (63) allows researchers from around the world to freely share metabolite 467 

standards and experimentally collected metabolite and food constituent spectra in a 468 

collaborative manner. Efforts such as FoodComEx should help create key community resources 469 

to expedite biomarker discovery (62). Clearly, more support is needed for these types of 470 

community-driven, bottom-up efforts. 471 

 472 

Dietary Biomarker Discovery 473 

After the candidate metabolites have been identified (either through targeted or 474 

untargeted metabolomic approaches) the next challenge is to identify the most useful or 475 

important biomarkers from the collection of identified metabolites. Biomarker discovery and 476 

biomarker assessment are often aided by the availability of specialized statistical software 477 

packages. These packages typically use multivariate statistics, feature selection and/or machine 478 

learning to identify one or more compounds that maximize the sensitivity and/or  479 

specificity of the biomarker or biomarker panel for the dietary exposure on a receiver operating 480 

characteristic (ROC) curve. While, ROC curves mainly enable the stratification of individuals 481 

based on their consumption of dietary components, it may be difficult to identify individuals with 482 

sporadic consumption. Maximizing the AUROC by selecting the right chemical or the right 483 

combination of chemicals is often a central goal of biomarker identification or biomarker 484 

discovery. Several freely available web-servers and software packages such as MetaboAnalyst 485 

and Galaxy have emerged over the past decade to provide comprehensive web-based tools for 486 

not only routine metabolomic data analysis and functional interpretation, but also provide the 487 

tools for metabolomic-based biomarker discovery suites (64, 65). However, advanced statistical 488 

tools are essential for validating dietary biomarkers, for integrating multi-omics data in nutritional 489 

studies, for correcting measurement errors in self-reported dietary reports (66) and for 490 

generating disease-diet biomarker regression models (67). There is a clear need for greater 491 

standardization, including standardized reporting (or minimum reporting standards) for the 492 
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statistical analysis of nutritional metabolomics data. Similarly, standardized processes for 493 

evaluating study reliability, data normalization, handling multiple testing effects, performing 494 

study replications and cross validation or external validation are also needed. In this regard, it 495 

would be particularly useful for the community to have statistical code repositories to foster 496 

greater uniformity and greater levels of reproducibility. 497 

 498 

Dietary Biomarker Validation 499 

LC-MS-based dietary biomarker discovery can provide hundreds of candidate 500 

biomarkers, but these biomarkers need to be thoroughly validated to be meaningfully employed 501 

in large cohort studies. The goal of validation is to ensure that newly discovered biomarkers can 502 

reliably and reproducibly predict dietary intake of food components. Biomarker validation 503 

requires analytical and biological testing of the performance of the biomarkers. It also requires 504 

an assessment of their specificity to food components, and their robustness in larger cohorts. 505 

While several concepts exist regarding the validation of biomarkers, there are no universally 506 

accepted validation criteria for dietary intake biomarkers. Dragsted et al. have recently devised 507 

an 8-step validation process that systematically assesses candidate biomarker plausibility, 508 

dose-response, time-response, robustness, reliability, stability, analytical performance, and 509 

reproducibility (20). Each criterion is important for establishing overall biomarker validity, but 510 

may be evaluated in different order, depending on the status of the candidate dietary biomarker.   511 

Standardized dietary biomarker validation criteria allow the grading of markers based on 512 

their performance. Biomarker plausibility evaluates the credibility of the association between the 513 

biomarker and its food components. Plausibility can be based on a variety of sources of 514 

evidence, including research literature or in silico analysis of predictable biomarkers from 515 

compounds in the existing food composition databases and/or experimental data from 516 

metabolomics. Biomarker kinetics (including dose-response and temporal response to a single 517 

acute exposure) can be used to determine the suitability of the biomarker over heterogeneous 518 
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food intake distributions, and variable biomarker half-lives. Time-related response to multiple 519 

exposures (e.g., medium or longer-term feeding studies) may yield information on the 520 

distribution pattern of the biomarker across biological tissues (RBCs, hair, nails, etc.). The 521 

robustness and reliability criteria are used to determine how the biomarker behaves in a mixed 522 

meal or as part of a normal diet in the real world among diverse populations (i.e., 523 

generalizability) and how it performs in comparison with other known biomarkers or other gold 524 

standards. Analytical performance criteria are used to determine the biomarker performance in 525 

both qualitative and quantitative terms, using known chemical standards ensuring a higher level 526 

of confidence in the biomarker performance. Cross-validation of the biomarker across 527 

laboratories confirms the reproducibility of the biomarker against food intake and completes the 528 

entire validation process.    529 

This 8-step view of biomarker validation covers the entire spectrum of biomarker 530 

development from discovery through validation employing similar strategies and analytical 531 

platforms, as they move from one step to another, depending on the purpose of the biomarkers. 532 

When there is substantial information available on a biomarker or a set of biomarkers, some of 533 

these validation steps may be eliminated to make more significant strides towards validation. 534 

Initial studies can employ small-scale acute feeding studies, followed by other studies enabling 535 

characterization of other elements such as dose and temporal response relationships or the 536 

testing of the candidate biomarker performance in separate cohorts. Wider acceptance and 537 

adoption of such a systematic approach by the research community will expedite dietary 538 

biomarker research, bridge the gaps between discovery and validation, and turn biomarker 539 

development into a tractable process.   540 

 541 

Areas Where More Data Are Needed 542 

 The paucity of validated dietary intake biomarkers represents a fundamental challenge 543 

for food and nutrition research and it highlights the need to acquire more data about the 544 
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chemical compounds found in food and their fate after ingestion. Some are metabolically inert, 545 

and the biomarker compound found in blood, urine or feces is identical to the compound found 546 

in a specific food (i.e., proline betaine for citrus consumption). In other cases, the consumed 547 

nutrients or non-nutrients are metabolically transformed by endogenous processes or the gut 548 

microbiota. This leads to chemical byproducts that are very different from the ones originally 549 

ingested in the food (e.g., microbial product equol from daidzein, after soy consumption). 550 

Therefore, to develop a large set of robust, specific and fully validated food-specific biomarkers, 551 

it will be necessary to do two things: 1) acquire more data about the chemical constituents found 552 

in food (the “food metabolome”) and 2) acquire more data about the way that these chemical 553 

constituents are biologically transformed in the human body.  554 

 More than 150 food composition databases exist; however, most of these databases 555 

contain a relatively small number (10-100) of non-unique compounds for a vast number of 556 

foods. For instance, the USDA nutrient composition database (68) contains chemical data for 557 

nearly 250,000 different foods, but it only lists an average of 50 chemical compounds in each 558 

food item. While this information is useful for general nutritional assessment, it is not useful for 559 

identifying potential food-specific biomarkers.  560 

More recently, a small number of on-line, electronic databases have emerged with more 561 

detailed chemical composition data for a smaller number of “raw” or mildly processed foods 562 

(Table 2).  However, their utility in nutrition research community is limited by their lack of 563 

visibility and their lack of standardization or integration with each other. Another issue relates to 564 

the fact that these databases are still relatively incomplete. Most raw foods contain >10,000 565 

different compounds, yet the average compound coverage in even the most comprehensive 566 

food composition database is <1000 compounds per food item. Indeed, untargeted analyses of 567 

hundreds of different foods by the Dorrestein lab at University of California at San Diego 568 

(UCSD) has found that <5% of the detected MS peaks in any given food item can be assigned, 569 

using these databases (69, 70). This highlights an even more serious problem with today’s food 570 
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composition databases; that is, they do not have sufficient authentic reference NMR or MS/MS 571 

spectra to permit broad and accurate compound identification. The availability of more authentic 572 

reference spectra would permit identification of more food-specific compounds in both foods and 573 

in human biofluids or excreta. Fewer than 1000 food-derived compounds have had their NMR or 574 

MS/MS spectra experimentally collected and deposited into food-specific databases (71). The 575 

lack of authentic chemical standards for food constituents and the lack of authentic referential 576 

spectra are the two most serious data-related issues hampering the identification, discovery or 577 

validation of food-specific biomarkers. 578 

 To find better food-specific biomarkers, it is important to know more about the way that 579 

these chemical constituents are biologically transformed in vivo. The fact that gut microbial 580 

activity influences the presence/abundance of certain food-specific metabolites adds another 581 

layer of complexity to food-specific biomarker identification. Indeed, the inter-individual variation 582 

due to differences in host genetics and the gut microbiome suggests that some degree of 583 

personalization may be required to properly interpret a number of food-specific biomarkers.  584 

While steady progress is being made to identify food-specific, liver-specific, and other 585 

tissue- and microbially-derived biomarkers, many challenges still exist. Just as with food 586 

constituents mentioned above, there is a profound shortage of authentic chemical standards 587 

and authentic reference NMR or MS/MS spectra for these important compounds. Fewer than 588 

200 these compounds appear to exist in chemical or spectral libraries, yet they probably number 589 

in the tens of thousands in human biofluids or excreta (71).   590 

Because bio-transformed compounds are difficult to isolate and expensive to synthesize 591 

via classical organic synthetic chemistry, there are two emerging approaches to address these 592 

problems.  One approach is to enzymatically synthesize these compounds, while the other 593 

approach is to computationally generate them (in silico metabolomics). The biosynthetic 594 

approach involves adding purified precursors to an artificial gut (72), to homogenized fecal 595 

material (73) or to isolated liver microsomes (74) and allowing the selected biomatrix to perform 596 



25 
 

the work. The limitation of this approach is that substantial effort is required to purify the 597 

products from each biomatrix and to collect the required MS/MS or NMR spectra. Furthermore, 598 

as highlighted earlier, there are relatively few precursor molecules (<1000) available to feed 599 

such a biosynthetic pipeline. So, while the experimental approach will likely generate many 600 

novel and authentic compounds, it is unlikely to generate enough compounds to cover >10-20% 601 

of the desired chemical space.  602 

The in-silico approach involves using computational approaches to generate metabolite 603 

structure by modeling biotransformation reactions (phase I, phase II and microbial reactions) on 604 

a known set of food constituent precursors. There are several commercial programs that 605 

effectively model these biotransformation processes, as well as a new freeware tool such as 606 

BioTransformer (75). Once the compound structures are computationally generated, it is 607 

possible to identify them in real samples by matching the observed MS/MS spectra using tools 608 

such as CSI-FingerID (76), molecular networking approaches via GNPS (57) or through the 609 

comparison of observed MS/MS spectra with predicted MS/MS spectra via CFM-ID (60). The 610 

advantages of this in silico approach are that it is fast, inexpensive and not limited by the 611 

availability of physical compounds. The disadvantages are that the predictions are not 612 

sufficiently accurate, and no authentic compounds or authentic spectra are generated.   613 

Biomarker measurement should be sensitive enough to capture dietary exposure 614 

information and should fall within the dynamic range of measurable limits commonly found in a 615 

population. However, dynamic ranges for most biomarkers are not currently known. In addition, 616 

from the personalized nutrition and health perspective, ranges may differ depending on 617 

physiological status and vary among adults and children. Capturing this variation is important to 618 

understand response versus non-response to a dietary exposure. To ensure sensitivity, 619 

concentration ranges (for different age groups) for each biomarker should be well defined (77, 620 

78). Developing and establishing reference ranges across different populations, including 621 

children and adults, for a variety of dietary markers is helpful before planning larger studies.   622 
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Another area where more data are needed concerns the half-life of putative dietary 623 

biomarkers. How fast a dietary compound is absorbed and how long it stays in the system 624 

before elimination can impact the timing of sampling and the utility of the biomarker. For 625 

example, food components with faster absorption, and elimination kinetics have a very narrow 626 

window for sampling (e.g., proline-betaine for citrus fruits) (44). Similarly, some biomarkers from 627 

microbial metabolism (e.g., urolithin) can only be detected 30-45 h, after the intake of 628 

ellagitannin (79, 80). Metabolites with very short half-lives may not be sensitive and contribute to 629 

measurement errors and may not render as useful biomarkers. Depending on the objectives of 630 

the biomarkers, it is desirable to choose biomarkers with sufficiently longer half-lives such as 631 

lipophilic metabolites, to minimize intra-individual variation (7). Comprehensive knowledge of the 632 

half-life of metabolites will certainly enhance biomarker identification approaches and expedite 633 

biomarker development. To this end, high-throughput methodologies for evaluating half-lives of 634 

metabolites (i.e. biomarkers) are needed to help advance the field.    635 

 636 

Integration of Dietary Biomarkers with Other Omics Techniques 637 

Dietary biomarkers are primarily small molecules derived from either the food itself or 638 

from the digestion and biotransformation of specific food-derived compounds. However, the 639 

abundance and the type of potential dietary biomarkers can be significantly altered by 640 

physiological parameters, which can contribute to significant inter-individual variability.  641 

Gut microbial metabolism also plays a vital role, in determining which circulating 642 

metabolites may be present. This has become apparent in relation to several classes of 643 

phytochemicals, including the Brassica-derived glucosinolates and flavonoids present in a 644 

variety of plant foods (81, 82). A well-known example is the bacterial conversion of the soy 645 

isoflavone daidzein to equol, which due to inter-individual differences in gut microbial community 646 

composition only occurs in a subset of individuals, upon soy consumption (83, 84). The ability to 647 

characterize the gut microbiome and its functional capacity (via 16S rRNA gene sequencing and 648 
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metagenomics, respectively) has helped to explain the variation in production of some putative 649 

dietary biomarkers. However, the fact that so many compounds (both endogenous and food-650 

derived) are affected by microbial metabolism suggests that these effects must be considered, 651 

in selecting reliable dietary biomarkers (85). 652 

Host genetics also has an important role in determining both the type and abundance of 653 

certain dietary biomarkers. Of note is the impact of single nucleotide polymorphisms (SNPs) on 654 

both nutrient metabolism and dietary preferences impacting the metabolites that can be 655 

detected and potential biomarkers. MWAS (metabolome-wide association studies) or mGWAS 656 

(genome-wide association studies with metabolomics) have linked metabolite levels to many 657 

human SNPs (86-88). So far, these studies have identified thousands of SNPs and thousands 658 

of metabolites that appear to co-vary. Some of these SNPs are known to account for up to 60% 659 

of the variability of circulating levels of certain metabolites (89).  660 

Given the significant effects of genetics on metabolite levels, it is essential that anyone 661 

conducting dietary biomarker studies carefully consider genetic data when selecting or 662 

identifying potential dietary biomarkers. The dietary biomarker community has two options: 1) 663 

use previously collected MWAS data to exclude certain metabolites as potential dietary 664 

biomarkers (due to their strong genetic control) or 2) use genetic/SNP data to adjust or 665 

recalibrate dietary biomarker data to work for specific individuals. Both approaches are feasible; 666 

however, over the short term, it is likely that the use of pre-existing MWAS data to exclude or 667 

disqualify proposed dietary biomarkers will be the easiest and most cost-effective approach.  668 

A number of interesting applications of genetics to dietary biomarkers are also starting to 669 

emerge. Some of the most fascinating ones may lie with the impact of SNPs on dietary 670 

preferences. Individuals who have adverse reactions to certain foods are unlikely to consume 671 

them and therefore should not have nutrient markers for those foods. On the other hand, 672 

individuals who have cravings for certain foods will likely have an abundance of markers for 673 
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those foods. Several examples of how SNPs affect dietary preferences (and therefore dietary 674 

biomarker levels) are described in Table 3.  675 

Overall, the existing evidence strongly suggests that genomics, microbiome analysis, 676 

and metagenomics can play a role in the detection, identification, validation and quantification of 677 

many known and putative dietary biomarkers. Therefore, the use of other omics (i.e. non-678 

metabolomic) techniques in dietary biomarker analysis can serve to complement the 679 

metabolomic information that is normally collected for dietary biomarker studies.   680 

 681 

Pathways to Precision Nutrition 682 

Simply stated, precision nutrition is the nutritional analog of precision medicine. More 683 

specifically, it is nutrition or dietary guidance designed to optimize health, facilitate disease 684 

prevention and enhance therapeutic benefit through molecular (metabolomic, genomic, 685 

proteomic, metagenomic) profiling at the level of the individual. Precision nutrition approaches 686 

require a keen understanding of how genetic-metabotype-diet interactions affect dietary 687 

biomarker levels and determine nutrient status. There are classical examples wherein genetic 688 

variation (i.e., SNPs) influences metabolic differences by influencing dietary requirements and 689 

responses to different diets. For example; dietary choline deficiency produces liver or muscle 690 

dysfunction in most men and postmenopausal women. Fortunately, the majority of 691 

premenopausal women are actually protected against choline deficiency, because of the 692 

hormonal induction of phosphatidyl ethanolamine-N-methyltransferase (PEMT), an enzyme that 693 

enables endogenous synthesis of choline (90).  However, a SNP in PEMT (rs12325817) 694 

prevents induction by estrogen, making a subset of these women susceptible to choline 695 

deficiency illustrates how polymorphisms in enzymes, in critical metabolic pathways can impair 696 

nutrient metabolism (91).  Unfortunately, these kinds of diet-related SNPs can only be confirmed 697 

by challenging individuals with differential diet regimens (low and high).   698 
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From this example of differential choline metabolism, it is apparent that precision 699 

nutrition approaches require data on both dietary intake and SNPs. Yet, to date, there are no 700 

catalogs of SNPs that can inform dietitians or other clinicians about specific nutrient 701 

requirements that might serve as the basis for practicing precision nutrition. Therefore, there is a 702 

critical need for catalogs of gene signatures that alter the metabolism of nutrients. These SNPs 703 

need to be confirmed for whether they can predict changes in a biomarker’s relationship to an 704 

individual’s nutrient status.   705 

Systematic integration of SNP data together with the broader metabotype based 706 

biomarkers will certainly advance precision nutrition efforts. The metabotype based 707 

personalized nutrition approach uses a broader metabolic phenotype that characterizes 708 

biological diversity between and within individuals. For example, comprehensive metabolite 709 

and/or lipidomic profiles may provide insights in relation to the response or not to dietary 710 

challenges.  711 

Precision nutrition efforts are also emerging through integrated studies of the 712 

microbiome and metabolome. In particular, Zeevi et al. (92) showed how a machine-learning 713 

algorithm that integrates metabolomic data, dietary habits, physiological measurements, 714 

physical activity, and gut microbiota can predict personalized postprandial glycemic response to 715 

complex (regular) meals. This result was further validated in a separate cohort of 100 test 716 

subjects, and then again in a blinded randomized controlled dietary intervention of 26 717 

individuals. Implementing these molecularly-informed custom diets led to significantly lower 718 

postprandial glycemic responses and consistent alterations in the gut microbiota of these test 719 

subjects. This is an excellent example of a well conducted, carefully validated biomarker study. 720 

It also demonstrates the remarkable potential of precision nutrition and shows how customized 721 

dietary guidance can be computationally designed to optimize health and enhance therapeutic 722 

benefit through comprehensive, multi-omic molecular profiling.  723 

 724 
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Conclusion 725 

It is evident that there are gaps and challenges to establishing nutrient or food-specific 726 

biomarkers. There are also some compelling ideas and novel resources that are starting to 727 

emerge that may help to address these challenges. Clearly, more human feeding studies, with 728 

well-chosen designs, are needed to fuel the dietary intake biomarker development process. 729 

In addition, it is important to appreciate that dietary biomarker development is a 730 

multidisciplinary enterprise and benefits from engaging several collaborative efforts. Fostering 731 

collaborations among analytical or natural product chemists, omics (metabolomics, genomics, 732 

proteomics, metagenomics) specialists, physicians, dietitians and nutritionists, statisticians, 733 

epidemiologists and bioinformaticians is critical for advancing the field. Chemists are needed to 734 

measure, synthesize or isolate the appropriate chemical standards, and to collect the relevant 735 

referential spectra. Omics specialists are needed to perform large-scale omics studies to 736 

discover or validate the appropriate biomarkers. Physicians, dietitians, nutritionists, and 737 

epidemiologists are needed to design the diets or dietary interventions, assemble the cohorts, 738 

collect the samples and acquire the meta-data. Statisticians need to be involved at various 739 

levels of biomarker development to help with biomarker discovery and validation, to assist with 740 

data modeling, and account for measurement error. Bioinformaticians are needed to consolidate 741 

or integrate the data, to develop data exchange standards, to create ontologies and bring some 742 

order to this very diverse array of data types. Finally, dedicated study participants are needed to 743 

generate the specimens. 744 

Interestingly, such a multi-faceted collaboration aimed at discovering food-based 745 

biomarkers has recently been undertaken by several countries in the European Union (and 746 

Canada) under the Joint Programming Initiative, a Healthy Diet for a Healthy Life (JPI-HDHL). 747 

Over the past 4 years the initiative, called FoodBAll or the Food Biomarker Alliance, has 748 

generated a wealth of data on dietary biomarkers (63). In particular, FoodBAll brought chemists, 749 

omics (metabolomics, transcriptomics, genomics) scientists, dietitians, clinicians, statisticians 750 
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and bioinformaticians together to work, collaborate and create much-needed resources. The 751 

result has been a number of useful tools, databases, chemical libraries, white papers, guidelines 752 

and other resources that are starting to form the basis, for using dietary biomarkers in nutritional 753 

epidemiology (63). This effort has stimulated a keen interest by many other scientific groups and 754 

communities around the world to extend and expand these promising ideas and resources. 755 

More support for these kinds of concerted and coordinated activities is essential to advance 756 

dietary biomarker research and to establish precision nutrition as an integral part of the drive 757 

towards precision health. 758 

  759 
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Table: 1 Strategies and approaches for advancing dietary 
biomarker development 
Challenges Recommendations/ Resources needed 
Define Dietary Biomarkers and Their Utility in Nutrition Research 
Multiple dietary biomarker 
definitions in use 

Adopt a universally accepted biomarker classification 
scheme with a well-developed ontology for use by the 
nutritional epidemiology and dietary biomarker community 

Lack of publicly available 
comprehensive databases on 
dietary biomarkers 

Develop or expand well-curated, publicly available 
international databases on dietary biomarkers such as 
Exposome-Explorer and Phenol-Explorer for prioritization 
of candidate biomarkers  

Lack of comprehensive food 
composition databases 

Develop and maintain comprehensive food composition 
databases  

  
Approaches to Studying Biomarkers 
Studies are often conducted 
with no clear regard for human 
heterogeneity 

Capture information on host factors (e.g., genetics, gut 
microbiome, behavioral and cultural practices) that may 
help to explain heterogeneity in dietary biomarker 
measures. 

Current feeding studies are 
“siloed” and often single 
studies conducted for shorter 
duration, involving smaller 
sample sizes 

Conduct larger CFS, testing a variety of foods and dietary 
patterns across diverse populations to identify universal 
candidate biomarkers 

Shortage of appropriately 
collected specimen repositories 
for dietary biomarker 
development  

Collect a variety of biospecimens (e.g., fecal samples, 
blood cells, saliva, toenails, hair) as part of feeding 
studies, to discover and validate both short- and long-term 
dietary biomarkers 

 Leverage existing biospecimen repositories from feeding 
studies and prospective cohorts, to validate dietary 
biomarkers 

 Encourage long-term storage of biospecimens from 
completed feeding studies for dietary biomarker 
development studies 

Lack of standardized specimen 
collection and processing 
protocols for omics analysis 

Implement well-standardized specimen collection and 
processing protocols to ensure reproducibility, 
comparability and generalizability across studies  

Cumbersome sampling 
procedures and lack of 
integration of advanced 
devices for sample collection  

Develop new sampling techniques for efficient collection 
and wider acceptance and improved adherence in large 
studies (e.g., dried blood spots) and adopt wearables and 
smart phone devices that allow for continuous metabolite 
monitoring 

  
Analytical and Statistical Considerations of Biomarker Development 
Metabolite coverage and 
reproducibility  

Encourage sharing of spectral data and chemical 
databases of biologically feasible structures of metabolites 

 Support internationally coordinated efforts for providing 
resources on food constituent libraries and biomarker data 
from various labs 
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 Facilitate distribution of relevant metabolite standards 
(e.g., FoodComEx) 

Shortage of strategies to 
evaluate variation within and 
between laboratories 

Develop standardized approaches for evaluating 
laboratory variation and normalizing for drift and 
differences across labs 

Shortage of statistical 
methodologies for handling 
measurement error and 
applying to dietary exposure 
assessment  

Conduct methodologic work on statistical procedures for 
intake biomarker discovery and disease application 

Sharing sensitive metadata 
across labs is difficult 

Establish secure portals accessible via cloud computing 
and portability environments for sharing metadata  

Lack of minimum reporting 
standards for statistical analytic 
pipeline/workflow for nutritional 
metabolomics studies 

Establish minimum reporting standards to support study 
replication. 

  
Dietary Biomarker Discovery and Validation 
Dietary biomarker development 
is lengthy with no clear 
validation criteria 

Adopt a universal dietary biomarker validation strategy 
that is accepted by the nutrition research community 

Untargeted metabolomics 
produces multiple metabolites 
with no quantitative measures 

Develop targeted and quantitative assays for validation 
studies, after initial biomarker identification 

  
Areas Where More Data Are Needed 
Lack of comprehensive food 
composition databases  

Create and maintain truly comprehensive food 
composition databases, by expanding existing databases, 
such as FooDB, in terms of chemical coverage and 
breadth of human food intake 

 Integrate more fully the various food composition 
databases using shared links, common identifiers and 
common ontologies 

 Extend food composition databases to archive 
experimentally acquired or accurately predicted referential 
MS/MS and/or NMR spectra data to facilitate food or 
dietary biomarker identification 

Lack of concerted efforts and 
community resources 
necessary for dietary 
biomarker development 

Support international efforts to prepare, acquire or 
synthesize authentic food-specific compounds and their 
MS/MS and/or NMR spectra and enable access via open-
source databases (e.g., GNPS, MoNA, FooDB, HMDB, 
the Metabolomics Workbench and MetaboLights) 

 Support international efforts to prepare, acquire or 
synthesize authentic gut-derived, liver-derived or similarly 
bio-transformed food compounds and their MS/MS and/or 
NMR spectra. Facilitate access, via open-source 
databases such as GNPS, MoNA, FooDB, HMDB, the 
Metabolomics Workbench and MetaboLights. 

 Improve algorithms and open-access software to more 
accurately predict metabolic bio-transformation products 
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(mimicking liver, microbial or promiscuous bio-
transformations) to facilitate in silico metabolomics 

 Improve algorithms and open-source software to more 
accurately predict MS/MS spectra (at multiple collision 
energies and on different platforms), NMR spectra, 
collisional cross-section data (for IMS data) and GC or 
HPLC retention times of small molecules 

Specificity is a challenge for 
dietary biomarker development 

Use combinations of biomarkers from either single study 
or pooled data from several feeding studies to increase 
marker specificity 

 Develop reference ranges for biomarkers across different 
populations and age ranges (children vs adults) 

  
Integration of Dietary Biomarkers with Other Omics Techniques 
Neither genomics nor 
metabolomics tools alone 
provide complete 
understanding of how dietary 
components are metabolized 

Integrate other omics methods in dietary biomarker 
analysis with a view to understanding the impact of 
individual variation and personalized responses  

 Identify and further explore the effect of SNPs on dietary 
biomarker measures 

 Improve tools (databases, software, statistical methods) to 
facilitate the integration of genomics, metagenomics, 
proteomics and metabolomics data in nutritional studies. 

Lack of systematically collected 
catalogues of SNPs 

Continuously update databases or catalogs of SNPs, 
genes and gene signatures that alter the metabolism, 
presence or abundance of known and potential dietary 
biomarkers 

  
Other critical elements 
Lack of concerted efforts for 
biomarker development 

Foster collaboration among multidisciplinary researchers 

 Encourage public-private partnerships for collecting and 
sharing the data on dietary biomarkers that would not be 
otherwise freely available  

 Train early career scientists in dietary biomarker 
development 

Lack of common ontology for 
dietary biomarker literature  

Support standard ontology efforts through development of 
newer and broader algorithms for electronically mining the 
literature 

 Convene taskforces for developing common data 
elements for dietary biomarker research  
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Table 2: Food metabolite Databases 
Database Description Unique features Reference 
Phenol-
Explorer 

First comprehensive 
database on polyphenol 
content in foods 

Plant polyphenol metabolites with 
375 biotransformation products 

(93) 

PhytoHub Plant based metabolite 
database on 
phytochemicals present in 
foods commonly ingested 
with human diets 

Plant metabolites with 578 
biotransformation products 

(94) 

HMDB  Human Metabolome 
Database on small 
molecule metabolites 
found in the human body 

A variety of endogenous 
metabolites with >1000 
biotransformation products; data 
on 3056 metabolites linked to 
2192 SNPs with 6777 specific 
metabolite-SNP interactions; data 
on 2901 metabolites that vary 
with physiology and data on 5498 
metabolites that vary with 
pathophysiological conditions 

(58) 

Exposome-
Explorer 

Biomarkers of exposure to 
environmental risk factors 
for diseases 

Data on 145 dietary biomarkers 
including their concentrations in 
various populations, type of 
biospecimens analyzed, the 
analytical techniques used, their 
reproducibility over time and 
correlations with food intake 

(95) 

FooDB Database on food 
constituents, chemistry 
and biology 

Data and referential MS and 
NMR spectra on >26,000 food 
chemicals found in >720 raw or 
lightly processed foods 

(71) 

GNPS Global Natural Product 
Social Molecular 
Networking- database of 
raw, processed or 
identified tandem mass 
(MS/MS) spectrometry 
data 

Food-specific data and includes 
MS-MS spectra from a large 
(>3500) number of different foods 

(57) 
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Table 3 – Genetics, SNPs and Food Preferences 
Gene Name SNP ID Effect Reference 
MCM6 (intron) rs182549 Lactose intolerance (96) 
MCM6 (intron) rs4988235 Lactose intolerance (96) 
MCM6 rs3754686 Proxy for milk intake  (97) 
ALDH2 rs671 Alcohol intolerance (98) 
ADH1B rs1229984 Alcohol aversion (99) 
ADH1C rs698 Alcohol dependence (100) 
KLB rs11940694 Increased alcohol consumption (101) 
TAS2R38 rs713598 Brassica vegetable & coffee 

aversion 
(102) 

TAS2R38 rs1726866 Brassica vegetable & coffee 
aversion 

(102) 

TAS2R38 rs10246939 Brassica vegetable & coffee 
aversion 

(102, 103) 

OR10A2 rs72921001 Cilantro/coriander aversion (104) 
CYP1A1 rs2472297 Increased coffee consumption (105) 
CYP1A1 rs2470893 Increased coffee consumption (105) 
AHR rs6968865 Increased coffee consumption (105) 
FGF21 rs838133 Sweet tooth (candy preference) (106) 
FGF21 rs838133 Increased carbohydrate and lower 

fat consumption 
(107) 

FGF21 rs838145 Increased carbohydrate and lower 
fat consumption 

(108) 

RARB rs7619139 Increased carbohydrate 
consumption 

(107) 

DRAM1 rs77694286 Increased protein consumption (107) 
FTO rs1421085 Increased protein consumption (107) 
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Legend 
 
Figure:1 Bidirectional interaction between dietary components and physiological 
systems embedded in food consumption driven by food environments and further 
influenced by cultural, and lifestyle factors.  Consumption of nutrients such as fatty 
acids, amino acids, vitamins, trace elements and bioactive compounds has an impact 
on host physiology, affecting both the health status and susceptibility to disease.  
Metabolism of dietary components is also influenced by the genetic make of an 
individual.  In addition, dietary components may directly impact gut microbiota 
composition and function, which may exacerbate metabolic and physiological outcomes 
and further influencing disease susceptibility.  Host physiology and altered susceptibility 
to disease in turn impact how these dietary substances are metabolized. 
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