163 research outputs found

    Cost-effectiveness of HBV and HCV screening strategies:a systematic review of existing modelling techniques

    Get PDF
    Introduction: Studies evaluating the cost-effectiveness of screening for Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) are generally heterogeneous in terms of risk groups, settings, screening intervention, outcomes and the economic modelling framework. It is therefore difficult to compare cost-effectiveness results between studies. This systematic review aims to summarise and critically assess existing economic models for HBV and HCV in order to identify the main methodological differences in modelling approaches. Methods: A structured search strategy was developed and a systematic review carried out. A critical assessment of the decision-analytic models was carried out according to the guidelines and framework developed for assessment of decision-analytic models in Health Technology Assessment of health care interventions. Results: The overall approach to analysing the cost-effectiveness of screening strategies was found to be broadly consistent for HBV and HCV. However, modelling parameters and related structure differed between models, producing different results. More recent publications performed better against a performance matrix, evaluating model components and methodology. Conclusion: When assessing screening strategies for HBV and HCV infection, the focus should be on more recent studies, which applied the latest treatment regimes, test methods and had better and more complete data on which to base their models. In addition to parameter selection and associated assumptions, careful consideration of dynamic versus static modelling is recommended. Future research may want to focus on these methodological issues. In addition, the ability to evaluate screening strategies for multiple infectious diseases, (HCV and HIV at the same time) might prove important for decision makers

    Detector and Front-end electronics for ALICE and STAR silicon strip layers

    Get PDF
    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented

    A photographic and acoustic transect across two deep-water seafloor mounds, Mississippi Canyon, northern Gulf of Mexico

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 25 (2008): 969-976, doi:10.1016/j.marpetgeo.2008.01.020.In the northern Gulf of Mexico, a series of seafloor mounds lie along the floor of the Mississippi Canyon in Atwater Valley lease blocks 13 and 14. The mounds, one of which was drilled by the Chevron Joint Industry Project on Methane Hydrates in 2005, are interpreted to be vent-related features that may contain significant accumulations of gas hydrate adjacent to gas and fluid migration pathways. The mounds are located not, vert, similar150 km south of Louisiana at not, vert, similar1300 m water depth. New side-scan sonar data, multibeam bathymetry, and near-bottom photography along a 4 km northwest–southeast transect crossing two of the mounds (labeled D and F) reveal the mounds' detailed morphology and surficial characteristics. Mound D, not, vert, similar250 m in diameter and 7–10 m in height, has exposures of authigenic carbonates and appears to result from a seafloor vent of slow-to-moderate flux. Mound F, which is not, vert, similar400 m in diameter and 10–15 m high, is covered on its southwest flank by extruded mud flows, a characteristic associated with moderate-to-rapid flux. Chemosynthetic communities visible on the bottom photographs are restricted to bacterial mats on both mounds and mussels at Mound D. No indications of surficial gas hydrates are evident on the bottom photographPartial support for the research cruises that collected the data for this study was provided by the Department of Energy, National Energy Technology Lab

    Lack of Detectable HIV-1 Molecular Evolution during Suppressive Antiretroviral Therapy

    Get PDF
    A better understanding of changes in HIV-1 population genetics with combination antiretroviral therapy (cART) is critical for designing eradication strategies. We therefore analyzed HIV-1 genetic variation and divergence in patients' plasma before cART, during suppression on cART, and after viral rebound. Single-genome sequences of plasma HIV-1 RNA were obtained from HIV-1 infected patients prior to cART (N = 14), during suppression on cART (N = 14) and/or after viral rebound following interruption of cART (N = 5). Intra-patient population diversity was measured by average pairwise difference (APD). Population structure was assessed by phylogenetic analyses and a test for panmixia. Measurements of intra-population diversity revealed no significant loss of overall genetic variation in patients treated for up to 15 years with cART. A test for panmixia, however, showed significant changes in population structure in 2/10 patients after short-term cART (<1 year) and in 7/10 patients after long-term cART (1-15 years). The changes consisted of diverse sets of viral variants prior to cART shifting to populations containing one or more genetically uniform subpopulations during cART. Despite these significant changes in population structure, rebound virus after long-term cART had little divergence from pretherapy virus, implicating long-lived cells infected before cART as the source for rebound virus. The appearance of genetically uniform virus populations and the lack of divergence after prolonged cART and cART interruption provide strong evidence that HIV-1 persists in long-lived cells infected before cART was initiated, that some of these infected cells may be capable of proliferation, and that on-going cycles of viral replication are not evident

    Production test of microstrip detector and electronic frontend modules for the STAR and ALICE trackers

    Get PDF
    We revisit Shin et al.’s leakage-resilient password-based authenticated key establishment protocol (LR-AKEP) and the security model used to prove the security of LR-AKEP. By refining the Leak oracle in the security model, we show that LR-AKE (1) can, in fact, achieve a stronger notion of leakage-resilience than initially claimed and (2) also achieve an additional feature of traceability, not previously mentioned

    TAB Bonded SSD Module for the STAR and ALICE Trackers

    Get PDF
    Presentation made at LEB99, 20-24 September 1999A novel compact detector module has been produced by the "IReS"-"Subatech"-"Thomson-CSF-Detexis" collaboration. It includes a Double-Sided (DS) Silicon Strip Detector (SSD) and the related Front End Electronics (FEE) located on two hybrids, one for the N side and one for the P side. Bumpless Tape Automated Bonding (TAB) is used to connect the detector to the hybrids by means of microcables with neither wirebonding nor pitch adapter. Each of the six dedicated ALICE128C FE chip [1], located on the hybrid, is TABed on identical single layer microcables, which connect its inputs to the DS SSD and its outputs to the hybrid [2]. These microcables are bent in order to fold over the two hybrids on the DS SSD. This module meets the specifications of two experiments, ALICE (A Large Ion Collider Experiment) on the LHC accelerator at CERN [3] and STAR (Solenoid Tracker At Rhic) on the RHIC accelerator at BNL (Brookhaven National Laboratory)[4]. It can be used with air cooling (STAR) as well as with water cooling (ALICE)[5]. This mechanically self-consistent FE module has been tested on the SPS beam at CERN. Preliminary results are presented
    • 

    corecore