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RESEARCH ARTICLE Open Access

White paper on microbial anti-cancer
therapy and prevention
Neil S. Forbes1* , Robert S. Coffin2, Liang Deng3, Laura Evgin4, Steve Fiering5, Matthew Giacalone6,
Claudia Gravekamp7, James L. Gulley8, Hal Gunn9, Robert M. Hoffman10,11, Balveen Kaur12, Ke Liu13,
Herbert Kim Lyerly14, Ariel E. Marciscano8, Eddie Moradian15, Sheryl Ruppel16, Daniel A. Saltzman17,
Peter J. Tattersall18, Steve Thorne19, Richard G. Vile4, Halle Huihong Zhang20, Shibin Zhou21

and Grant McFadden22*

Abstract

In this White Paper, we discuss the current state of microbial cancer therapy. This paper resulted from a meeting
(‘Microbial Based Cancer Therapy’) at the US National Cancer Institute in the summer of 2017. Here, we define
‘Microbial Therapy’ to include both oncolytic viral therapy and bacterial anticancer therapy. Both of these fields
exploit tumor-specific infectious microbes to treat cancer, have similar mechanisms of action, and are facing similar
challenges to commercialization. We designed this paper to nucleate this growing field of microbial therapeutics
and increase interactions between researchers in it and related fields. The authors of this paper include many
primary researchers in this field. In this paper, we discuss the potential, status and opportunities for microbial
therapy as well as strategies attempted to date and important questions that need to be addressed. The main
areas that we think will have the greatest impact are immune stimulation, control of efficacy, control of delivery,
and safety. There is much excitement about the potential of this field to treat currently intractable cancer. Much
of the potential exists because these therapies utilize unique mechanisms of action, difficult to achieve with other
biological or small molecule drugs. By better understanding and controlling these mechanisms, we will create new
therapies that will become integral components of cancer care.

Preamble
The fields of oncolytic virotherapy and bacterial therapy
both exploit tumor-specific infectious microbes to treat
cancer. As both disciplines have evolved into greater ma-
turity, there has been an increasing appreciation that
they share many features in common, to the point where
a more consolidated approach (i.e. “oncolytic microbial
therapy”) could be fruitful. For example, both modalities
rely upon the ability of the therapeutic microbe to se-
lectively infect and kill cancer cells in situ, and thereby
stimulate a more robust anti-cancer immune engage-
ment in addition to the mobilized cellular and humoral
responses that clear the microbe. This White Paper is

designed to increase the interactions between these
growing fields of microbial oncolytics, and introduce
their advances to the wider community of scientists and
clinicians working on immunotherapies for cancer. We
also describe the state of the field of microbial cancer
therapy and point the direction where development and
greater synergies with other fields are needed to increase
the number of patients and indications that could bene-
fit from this powerful modality.

Potential of microbial anti-cancer therapy and
prevention
Microbial therapy has had several prominent successes in
recent years, including the commercialization of the first
licensed virotherapeutic, Imlygic (T-VEC), and numerous
viral and bacterial candidates progressing through clinical
trials. The approval of Imlygic has heralded a renewed
interest in microbial therapies. There are many common
issues between virus- and bacteria-based therapies and
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addressing them concurrently will help advance and unify
these two research communities. Specifically, we will spell
out the major limitations still facing microbial therapies
and what steps are necessary to promote greater transla-
tion into clinical use, especially in combination with other
emerging modalities such as cancer immunotherapy.
Microbial therapies (viral or bacterial) are derived from

naturally occurring microorganisms that have often been
genetically modified to reduce systemic pathogenicity and
increase anti-cancer efficacy. Microbial therapies eliminate
malignant tissue by various mechanisms, such as in situ
production of cytolytic or immunostimulatory agents
within tumor beds. Both viral and bacterial therapies have
been shown to be capable of re-sensitizing tumors that
have suppressed immune surveillance within the tumor
microenvironment. Stimulation of the immune system
amplifies the desired anti-tumor responses, clearing dis-
tant tumor tissue and preventing recrudescence of the
cancer.
The potential to cure cancer, or render some as chron-

ically treatable, is the force that is driving discovery and
innovation with microbial therapies. Microbial therapies
have the potential to provide solutions to many clinical
needs that cannot be addressed by current cancer thera-
peutics. These needs include treatment of refractory
metastatic cancers, multidrug-resistant cancers, and can-
cers that evade immune clearance. This group affects al-
most all cancer sites including solid carcinomas of the
digestive and reproductive systems, melanoma, sarcoma,
and blood cancers. Due to the diversity and plasticity of
candidate microbes, the development of multiple micro-
bial therapies has the unique potential to address each
of these widespread problems. Continual improvements
in genetic manipulations have greatly sped up the time
from idea generation and preclinical proof-of-concept to
clinical testing, and these increases can only be expected
to continue to improve in the future.
An essential strength of microbial-based therapies is

their specific targeting of cancerous cells and tissues. As
such, microbial therapies are well-suited as therapies for
metastatic disease, the primary cause of death from
cancer. In addition, microbial therapies can circumvent
the multi-drug resistant phenotypes that inevitably limit
the long-term effectiveness of targeted small-molecule
therapies. Microbial therapies have been created to re-
verse the immune suppression frequently exhibited in
late stage tumors that is essential for the proliferation of
many cancers [1]; and motile bacteria or carrier-cell
loaded viruses have been developed to penetrate tumor-
ous regions inaccessible to standard biologics and small
molecules [2]. These factors allow for potent tumoricidal
effects capable of generating secondary immunothera-
peutic effects while simultaneously minimizing off-target
tissue damage and reducing local and systemic toxicities.

Microbiota can be manipulated, and these manipula-
tions can be designed to offer features that may improve
their ability to treat cancer. For example, the expression
of microbial genes can be controlled by features of the
environment, such as hypoxia, or other features of cancer
cells, such as abnormal gene expression. Recombinant
microbiota incorporating genetic features that are turned
on or off in the presence of cancer-specific changes may
enable a very large dose-response index, improving safety
while enhancing the anticancer effects [3].
Strategies for prevention with microbes is less devel-

oped than therapeutic strategies. Microbes that have
been envisioned as cancer preventatives include prophy-
lactic vaccines that target precancerous lesions and vi-
ruses that enhance and prime the immune response
against precancerous cells. Microbial prophylactic vac-
cines have the potential to target cancers with viral
etiology.

History of microbial therapy
Microbial therapy against cancer has a long history. The
interaction of bacteria and cancer has been known for
several centuries. Records go back at least 200 years
describing cancer patients going into remission after a
bacterial infection [4]. For example, in 1867, the German
physician Busch reported that a cancer went into remis-
sion when the patient contracted erysipelas, now known
as Streptococcus pyogenes [4]. This strategy was adopted
and promoted by William B. Coley of New York Cancer
Hospital, which later became Memorial Sloan-Kettering
Cancer Center. Coley read about 47 cases of cancer where
each patient became infected with bacteria and tumors
regressed. In response, Coley looked for evidence in his
hospital and located two patients whose tumors regressed
after S. pyogenes infection. He then began treating patients
and had excellent results infecting cancer patients with S.
pyogenes. His first patient recovered from head and neck
cancer. Coley subsequently used killed S. pyogenes in com-
bination with a second killed organism now known as Ser-
ratia marcescen bacteria [5, 6]. The mixture of the killed
organisms became known as Coley’s Toxins [5, 6]. James
Ewing, for whom the Ewing sarcoma is named was Coley’s
boss, did not allow Coley to continue to use his toxins.
Coley died deeply disappointed in 1936 and thus ended
bacterial therapy of cancer for almost 70 years.
Hoption Cann et al. [7] compared the outcome of

Coley’s bacterial treatment to current chemotherapy
and found the 10-year survival rates of Coley’s patients,
whose records were meticulously maintained by his
daughter, Helen Coley Nauts, were comparable to pa-
tients receiving current conventional therapy [7]. Coley
is now known as the “father of immunotherapy of
cancer”, and bacterial therapy is thought by many to be
exclusively immunotherapy. However, a large number
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of studies have shown that, in addition to being im-
munological, bacteria can be engineered to directly kill
cancer cells [4, 8–10].
The history of virotherapy for cancer is similar to bac-

terial therapy [11, 12]. Viruses were discovered later than
bacteria and were only determined to be of a particulate
nature in 1917 [13]. However, it had been observed that
viral infection could lead to tumor regression. In 1904,
Dock reported the regression of a patient’s leukemia after
infection with influenza [14, 15]. There has been interest
in viral therapy ever since the appearance of these early re-
ports. It wasn’t until 1949 that a trial was attempted after
it was observed that hepatitis had an effect against
Hodgkin’s disease [16]. It would take several more decades
and the advent of genetic engineering before viruses could
be made effectively nontoxic, as shown by the seminal
work of Martuza, who showed that herpes simplex virus
could be used to treat glioma [17].

Current status of microbial therapy: Major
preclinical and clinical advances
The past few decades have seen an increase of systematic
development and testing of microbial therapies. Enthusi-
asm for continued development of such therapies is due
to early successes in preclinical and clinical studies. A
number of viruses from diverse genera have been devel-
oped into anticancer therapies, several genera of bacteria
have been tested in preclinical studies, and a few bacterial
platforms have been tested in clinical settings [18, 19].
These rationale-based scientific investigations into micro-
bial therapies led to the approval of the first-in-class,
oncolytic-herpes-simplex-virus-1-derived therapy, Imylgic
[20] by the US Food and Drug Administration (FDA) and
European Medicines Agency (EMA) in 2015 for the treat-
ment of late stage melanoma (see Case Box #1). These
oncolytic viral therapies demonstrated an exceptional
safety profile through Phase III clinical trials.
Although initially designed as tumor lysing agents,

the oncolytic virus (OV) platform also possesses activity
as anti-vascular agents, gene therapy vectors, and their
therapeutic capacity is intrinsically linked to their
immune-stimulatory capabilities [21, 22]. The major
developments in the field have focused on enhancing
their capacity as oncolytic vaccines, and as disruptors
of the immune-inhibitory tumor microenvironment.
This focus has been particularly important in the clinic,
where the development of correlative assays as surro-
gate markers for efficacy and combinatorial strategies
with other anti-cancer agents reflect the capacity of
oncolytic viruses as unique immunomodulators [23].
For bacteria-based microbial therapies, many preclinical

studies have shown retarded tumor growth and increased
survival [24, 25]. Complete tumor regression was achieved
with oncolytic bacteria in immunocompetent animals

bearing syngeneic tumors and in companion dogs with
spontaneous tumors [10, 26, 27]. Bacterial strains have
been engineered with therapeutic payloads that resulted in
enhanced antitumor activity [18]. Preclinical pharmaco-
logic and toxicologic studies have been conducted to
support bacterial strains used in clinical studies. In gen-
eral, properly attenuated live bacteria have satisfactory
safety profiles in both healthy and tumor-bearing ani-
mals [28, 29]. Following intravenous administration, at-
tenuated bacteria or bacterial spores are cleared from
the circulation and the clearance organs, i.e. liver and
spleen, in hours to several days [2, 28]. Recent clinical
trials showed encouraging response rates with dually
attenuated Listeria monocytogenes designed to deliver
recombinantly expressed tumor-specific antigens and
the bacterium was well tolerated [30–35].
A prime example of a current cancer therapy based on

an attenuated microbe is the treatment of superficial
bladder cancer with the Bacillus Calmette-Guerin (BCG)
vaccine. This modality likely functions by the nonspecific
stimulation of immune responses against the tumor, and
represents the only bacterial-based cancer therapy that
is currently an established medical standard-of-care [36].

Unmet medical needs: Opportunities for microbial
therapy and prevention
Novel treatment strategies are urgently needed to fill the
unmet medical needs for cancer patients where the four
traditional categories of cancer management are not ef-
fective. These pillars of cancer therapy include surgery,
radiation, chemotherapy and more recently, immuno-
therapy [37]. Recent success with immune-checkpoint
blockade (ICB) monotherapy has led to FDA approval
and use to control many cancer types [37–40]. However,
many patients don’t respond to ICB agents because of
(1) intrinsic genetic characteristics of the cancer; (2) an
immunosuppressive microenvironment; (3) host environ-
mental influences, or (4) insufficient tumor antigen load
to stimulate effective anti-cancer cellular responses [41,
42]. For example, patients with advanced pancreatic ductal
adenocarcinoma, metastatic prostate cancer, or mismatch
repair-proficient (MMRp or MSI-h) colorectal cancer gen-
erally fail to respond to anti-CTLA-4 or anti-PD1/PD-L1
monotherapy and continue to pose therapeutic challenges
to oncologists [43–48]. In addition to primary resistance
to ICB, acquired resistance to ICB has also been re-
ported in both animal models and in patients, which
contributes to treatment failure and disease recurrence
[49–52]. The mechanisms of acquired resistance to ICB in-
clude, but are not limited to: (1) loss of tumor-suppressor
gene, such as PTEN [51, 53] or overexpression of β-catenin
[52], (2) up-regulation of inhibitory molecules such as
PD-L1 and VISTA [50], (3) loss of neoantigens in the
evolved tumors [49], (4) epigenetic silencing of chemokines
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that facilitate tumor-specific T cell recruitment to tumors
[53], (5) loss of B2M required for cell surface expression
of HLA-I [54, 55], and (6) loss-of-function mutations in
JAK1 or JAK2 [54].
Other examples of refractory cancers are melanoma,

urothelial carcinoma, some lung cancers and malignant
pleural mesothelioma (MPM). Two forms of melanoma
that lack effective treatment are locally-advanced unre-
sectable disease that is refractory to immune-checkpoint
inhibitors, and refractory visceral metastatic disease. Simi-
larly, in urothelial carcinoma, non-muscle invasive bladder
cancer can be refractory to Bacillus Calmette-Guerin
(BCG) and locally advanced muscle invasive and/or meta-
static disease can be refractory to both platinum agents
and ICB. In lung cancer, treatments are needed for

patients who have failed chemotherapy and are PD-L1low

and PD-L1neg, indicating poor response to ICB agents tar-
geting the PD-1/PD-L1 axis. The poor efficacy of standard
therapy for MPM (surgery, chemotherapy and radiation)
would be improved by the addition of new modalities.
Unmet needs that could be addressed with microbial
preventive agents include cancers with viral etiology such
as hepatitis C virus (HCV), Merkel cell polyomavirus
(MCV), Epstein-Barr virus (EBV), human herpesvirus 8
(HHV-8), and human T-cell lymphotropic virus type 1
(HTLV-1). While many other opportunities for microbial
oncology therapeutics exist, they are most likely to get
clinical traction in indications such as these examples
where high-priority unmet needs exist. If durable clinical
benefit is obtained in these indications, microbial-based

Box 1 Case examples: Talimogene laherparepvec (T-VEC, Imlygic)

T-VEC is a modified herpesvirus with deletion of two viral genes and insertion of GM-CSF. The initial developer of T-VEC was BioVex Ltd,

a UK-based company which originated from the academic lab of Robert Coffin at University College London in 1999. It was designed to

induce a more systemic benefit than previous oncolytic viruses by providing an immune enhancement component. To increase local

anti-cancer effects T-VEC was derived from a higher potency clinical isolate of HSV than had been used before. Two viral genes were

deleted: ICP34.5 and ICP47. Deletion of ICP34.5 provides tumor selectivity and deletion of ICP47 leads to increased expression of US11

and usually inhibits antigen presentation. Increased US11 partially overcomes the phenotype of ICP34.5 deletion, which reduces tumor

replication, without reducing tumor selectivity. The gene encoding GM-CSF was inserted into the virus to recruit and activate dendritic

cells. This was based on the prior observation that tumor-cell-derived cancer vaccines expressing GM-CSF (so-called GVAX vaccines;

Cell Genesys) had demonstrated clinical promise. Previous GVAX vaccines needed to be derived from tumor biopsies (i.e. be autologous),

which was logistically challenging. T-VEC was intended to generate an autologous GVAX-like vaccine directly in the patient in situ, without

the patient-specific manufacturing complexity, and with the direct tumor-killing ability of an oncolytic virus.

T-VEC initially began a phase 1 study in the UK in 2003. This study demonstrated that the optimal dosing strategy was a lower initial

dose followed by higher subsequent doses. The initial dose served to seroconvert or boost anti-HSV immunity, which then reduced the

side effects for subsequent higher doses. These side effects were transient fevers and local reactions. Using this dosing approach T-VEC

was well tolerated, and showed promising signs of anti-tumor activity, including necrosis and shrinkage of injected tumors and tumors

which were nearby, and inflammation of distant, uninjected tumors [211]. Further studies were conducted in head and neck cancer in

combination with chemotherapy and radiation [212], pancreatic cancer (unpublished), and melanoma [213]. The 50 patient melanoma

study showed a 26% response rate in a mixed population of melanoma patients (Stage IIIc-IVM1c, both previously treated and first line),

which was felt very promising (particularly as at that time - 2007- no drug had demonstrated improved survival in melanoma) and led to the

initiation of a phase 3 study.

The Phase 3 study [20] was conducted in the UK, US, Canada and South Africa, and enrolled 436 Stage IIIb-IVM1c patients randomized

2:1 to be treated with T-VEC or subcutaneous GM-CSF. The primary endpoint agreed with the FDA under SPA was 'durable response rate'

(DRR). This provided a rigorous assessment of efficacy and required that patients maintained a continuous six month period of response

(PR or CR) to count towards the primary objective of the trial. This was also based on the assessment of all tumors rather than only a

subset of tumors, and allowed that progression could occur before response, i.e. as might be expected with an immune-based approach.

This study was initiated by BioVex in 2009, and then completed by Amgen, by whom BioVex was acquired in 2011. The results of this

study showed a 16.3% DRR for T-VEC vs 2.1% for GM-CSF, with an overall response rate (ORR) of 26.4% vs. 5.7%, respectively [20, 210].

Median survival was 23.3 months for T-VEC and 18.9 months for GM-CSF (P=0.051). The improvement in survival was greater in patients

without visceral disease (Stage IIIb, IIIc or IVM1a disease) and in previously untreated patients. The trial met its primary objective in the

ITT population, and was approved by the FDA for that patient group in 2015. However, the most appropriate patients for treatment with

single T-VEC appeared to be those without visceral disease or who were first line. EMA approval was received for these groups in 2016.
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therapies would be well positioned to address other oncol-
ogy indications.

Microbial strategies attempted to date
Microbial therapies have unique mechanisms to control
cancer. It is the uniqueness of these mechanisms that
provides the potential for these therapies to address
unmet needs that cannot be attained with molecular
therapies. There are three major mechanisms employed
by microbial therapies to control cancer: gene delivery,
immune stimulation, and direct oncolysis. For many
viral therapies, these three mechanisms are intimately
linked and are driven by single genes or single mecha-
nisms. For bacteria, which are larger and contain more
genetic material, these mechanisms can be integrated or
built from disparate mechanisms.

Virotherapy and cancer vaccines
Most virus-based therapies are multi-mechanistic. These
therapies function by delivering genes into the cancer
host cells. Many of these delivered genes are designed to
either directly engage the immune system or to lyse can-
cer cells. This lysis leads to the release of cancer specific
antigens that in turn stimulate the acquired immune
system. Virus therapies can be grouped into two types:
cancer vaccines and virotherapies. Vaccines encode and
express cancer-specific antigens or epitopes. In contrast,
virotherapies do not encode exogenous tumor antigens
but drive lytic mechanisms that kill cells to unmask or
unleash endogenous antigens from the cells that become
infected. “Oncolytic vaccines” are a hybrid strategy, in
which an oncolytic vector also encodes a tumor antigen
or neo-epitope.
Viral therapies can utilize either replicating or

non-replicating viruses. Replication-competent viruses
retain the ability to replicate and spread to adjacent
un-infected tumor cells and are, in theory, dose ampli-
fying. Eventual death of virus-infected tumor cells en-
sues a second mode of efficacy resulting from host
anti-tumor immune responses roused by the release of
tumor antigens along with inflammation due to infec-
tion. Together this has the potential to educate a host
memory response to clear both injected lesions as well
as un-infected metastatic disease.
Most nonreplicating viruses are utilized predominantly

as gene delivery vehicles that can deliver toxins, tumor

suppressors, genes that result in drug sensitization to
chemotherapy, or genes that convert a non-toxic drug
into its toxic intermediate [56]. These agents have been
exploited as carriers of tumor suppressor genes, such as
p53, or to deliver cytotoxic suicide genes. This has the
potential to be a self-limiting mechanism because tumor
cell death results in clearance of the vector [57]. An ex-
ample of immune-modulating gene therapy that just en-
tered first-in-human trials is an adenovirus encoding for
human FlT3L to elicit an antitumor immunity [58]. There
are several ongoing clinical trials with non-replicating vi-
ruses (Table 1).
Many viral strains have been exploited for anti-cancer

drug development. DNA viruses include: Adenoviridae,
HSV-1, Parvoviridae (see Case Box #2), and Poxviridae.
RNA viruses exploited for development into tumor
agents of destruction include Paramyxoviridae, Picorna-
viridae, Reoviridae, Retroviridae, and Rhabdoviridae [59].
Some strains of viruses that are not associated with
human pathology, such as the normally rabbit-specific
myxoma virus, have also shown a natural propensity for
replication and destruction in human tumors. A table of
current active clinical trials with different oncolytic vi-
ruses is shown in Table 2.

Cancer vaccination: Gene delivery to engage the immune
system
Viral vectors are the default selection for gene-delivery
therapies. Research over the past three decades has led to a
deep understanding of viral tropism, genome sequences,
regulatory elements and immune-evasion mechanisms.
These efforts have culminated in the development of a ver-
satile arsenal of increasingly tumor-selective viral-vector
technologies. Replacement of naturally-occurring viral
genetic-regulatory elements with tumor-specific elements
has been a key enabling feature that has led to the gener-
ation of numerous tumor-selective viral vectors [60, 61].
These modified viruses limit gene expression and infect-
ivity to tumor cells while sparing normal cells, allowing
for the incorporation of a wide array of different genes
encoding for potent effector proteins such as cytokines,
chemokines, protein toxins, gene silencing RNAs, mi-
cro RNAs, and prodrug-converting enzymes [62]. Vi-
ruses have been used as vaccination agents, either by
inducing cross-reactive immunity, or more commonly

Table 1 Examples of recent trials for non-replicating-virus-mediated cancer gene therapy

Biological Agent Virus (gene) NCT# Indication

AAV2hAQP1 AAV (Aquaporin-1) NCT02446249 Squamous cell Head and Neck cancer

NP2 HSV-1 (NP2) NCT00804076 Cancer pain

Ad5CMV-p53 Adenovirus (p53) NCT00003147 Liver cancer

TK99UN Adenovirus (HSV TK) NCT00844623 Hepatocellular carcinoma

Forbes et al. Journal for ImmunoTherapy of Cancer  (2018) 6:78 Page 5 of 24



being engineered to express specific antigens to be tar-
geted by adaptive immune responses.
To enhance the immune response, the processing of spe-

cific antigens can be altered. For example, gene sequences
encoding fusion proteins linked to intracellular-trafficking
elements have been demonstrated to improve and enhance
antigen presentation [63, 64]. The potential to locally
augment an adaptive immune response to tumor
neoantigens is quite promising, as there is a consensus
that shared mutated antigens are uncommon, and the
majority of mutated antigens serving as neoantigens are
private. Consequently, local secretion of a variety of
immune-stimulating molecules, such as GM-CSF and
IL-12 have been engineered into microbes, as well as
adaptor proteins such as MyD88 [65, 66].
Another approach to cancer vaccination is “in situ”

vaccination (ISV). Vaccines exploit antigens to be recog-
nized by the immune system and adjuvants to activate
the immune system, but for cancer, the problematic
issue has been to choose exactly which antigens are the
“right” ones. ISV uses the tumor as the source of the
antigen and injects the adjuvant directly into the tumor.
The overall goal is to generate a strong local antitumor
response that reverses the local tumor-mediated immuno-
suppression and then to have that local response become
systemic to fight potential or recognized metastatic dis-
ease [67, 68]. For over 30 years, the standard-of-care to
treat superficial bladder cancer after surgery has been ap-
plying Bacillus Calmette-Guerin to the bladder lumen as
an ISV immune adjuvant [69]. Another current ISV treat-
ment in clinical usage is resiquimod, a TLR 7 agonist, for
cutaneous T cell lymphoma treatment [70]. There are a
variety of ongoing studies investigating the best ap-
proaches to in situ vaccination, such as developing a plant

Table 2 Examples of active studies with oncolytic viruses

Biological Agent Virus NCT# Indication

TG6002 Vaccinia virus NCT03294486 Glioblastoma

ADV/HSV-tk Adenovirus NCT03004183 NSCLC and triple-negative Breast Cancer

Pexa-Vec Vaccinia NCT03206073
NCT02562755

Colorectal
Hepatocellular Carcinoma

LOAd703 Adenovirus NCT02705196 Pancreatic Cancer

CG0070 Adenovirus NCT02365818 Bladder cancer

MV-NIS Measles NCT00408590
NCT02192775

Ovarian cancer
Multiple myeloma

HF-10 HSV-1 NCT03252808 Melanoma

GL-ONC1 Vaccinia virus NCT02714374
NCT02759588

Solid Tumors
Ovarian cancer

VCN-01 Adenovirus NCT02045602 Advanced Solid Tumors

Ad-MAGEA3 Adenovirus NCT02879760 NSCLC

OBP-301 Adenovirus NCT03190824 Unresectable Metastatic Melanoma

G207 HSV-1 NCT02457845 Pediatric Brain Tumors

Abbreviations: NSCLC non-small cell lung cancer

Box 2 Case examples: Rodent protoparvoviruses

Parvoviruses are the smallest viruses currently being developed

as oncotherapeutic agents. The rodent protoparvovirus H-1 is

currently in Phase I/IIA clinical trials against glioblastoma

[214, 215] and pancreatic cancer [216] in Germany. Viral capsids

are non-enveloped and extremely rugged, simplifying their

production, purification and storage [217–219], as well as enhancing

their tissue penetration properties. The protoparvoviruses belong to

the same virus family as the adeno-associated viruses (AAV), which

have already found extensive clinical use as gene therapy vectors.

Unlike AAV, protoparvoviruses, do not require a helper virus for

vegetative growth. However the rodent protoparvoviruses

can infect human cells only if the cells are neoplastically

transformed, and thus are intrinsically oncotropic [220, 221].

They exhibit a relatively high spontaneous mutation rate in

cell culture, allowing them to be rapidly selected for enhanced

targeting of tumor cells by serial passage [222]. A replicating, but

non-propagating, vector system has been developed from these

viruses, capable of expressing up to two immunomodulatory

genes in place of the viral-coat-protein coding sequence. The

vector construct can be packaged into a tumor-cell-target-

enhanced capsid selected in vitro. The dual-transgene can express

either co-stimulatory or immunoregulatory molecules, or both, from

the same cassette. Viral infection induces robust pro-phagocytic

signals, such as ectopic calreticulin expression, and secretion of

alarmins, such as HMGB1. Current applications using parvoviruses

include glioblastoma multiforme, malignant melanoma and

pancreatic ductal adenocarcinoma.
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virus, cowpea mosaic viral-like nanoparticle, as a potent
ISV reagent [71].

Oncolytic viruses: Vaccines and virotherapy
One limitation of cancer vaccines is that, although
tumor-associated antigens have been well characterized,
the presence of tumor-specific neoantigens generated by
somatic mutations within the genome of a cancer cell,
are most commonly private, with shared antigens
representing a very small percentage of known antigens
[72]. Consequently, strategies to identify and generate
tumor-specific immune response are being sought. To
create immunogenic viral vectors, natural viruses have
been modified to express tumor-specific antigens during
the tumor-cell-lysis portion of the viral-infection cycle.
This modification results in in situ “oncolytic vaccination”,
at least partly promoted by antigen cross-presentation
[73]. To better promote the immune response against
these host antigens, several oncolytic viruses encode for
immunostimulatory cytokines such as Type-I interferons
or GM-CSF [73]. An alternative approach to strict
viral-mediated oncolysis is tumor-selective dissemination
and expression of a prodrug-converting enzyme followed
by administration of the prodrug (e.g. Toca 511/FC) [74].
There are numerous active clinical trials with oncolytic vi-
ruses (Table 2).
One advantage of recombinant viruses that are

oncolytic, is that they are capable of causing tumor
cytoreduction, but also capable to elicit adaptive im-
mune responses to the antigens, including neoantigens
released by tissue injury and death induced by the
viral life cycle. Immune activation by oncolytic-virus
infection of tumor tissue comprises both, immediate
effects of innate immunity and also adaptive responses
for long-term tumor-specific activity. Much of the en-
thusiasm surrounding oncolytic vaccines revolves
around their appeal as multi-mechanism therapeutics
[21]. Oncolytic viruses are proposed to function
through a combination of (1) selective killing via
tumor-specific cell lysis (oncolysis) and (2) activation
of innate and adaptive immunity via immunogenic cell
death, immunostimulation from recognition of viral
constituents, and release of both viral and tumor anti-
gens [75]. As mentioned, oncolytic viruses can also be
engineered to encode transgenes to further engage the
host immune response.
This approach to microbial-based cancer therapy may

be particularly well suited for use in indications not con-
sidered to be highly immunogenic, but where overex-
pression of specific tumor-associated antigens could be
of value. These recombinant microbes are engineered to
deliver or express tumor associated antigens in profes-
sional and immature antigen-presenting cells in vivo to
break peripheral tolerance of tumor-antigen-specific

effector cells. Measurable clinical responses to microbial
therapies designed for this purpose have been achieved
and, while response rates are low, they are significant,
appear to be durable, and highlight the promise of this
approach.

Bacterial therapy
Similar to viral therapies, bacterial therapies can func-
tion predominantly by direct oncolysis or by engaging
the immune system. Direct oncolysis can be mediated by
secreting exotoxins or competing for nutrients [76]. Al-
ternately, intracellular bacteria can kill host tumor cells
by inducing apoptosis or by uncontrolled proliferation
resulting in bursting of the infected tumor cells [77]. In
addition, bacterial infections inevitably activate both in-
nate and adaptive arms of the immune system, which
target not only the bacteria but also tumor cells [78].
An essential strength of bacterial therapies is their spe-

cific targeting of cancerous cells and tissues. Each modal-
ity targets in a distinct way. For example, active bacteria
have been engineered to only colonize the microenviron-
ment of tumors [79, 80]; oncolytic bacteria have been
engineered to induce cell death specifically in cancer [81];
and immune-sensitizing bacteria have been engineered to
induce responses to cancer-specific antigens either directly
[30] or indirectly through epitope spreading [82]. Because
of these varying targeting mechanisms, microbial therap-
ies are well-suited as therapies for metastatic disease.
A large number of bacterial genera have been investi-

gated as potential therapeutics (Table 3). The bacterial
genera receiving the most attention thus far include
Listeria monocytogenes (Case Box #3), Clostridium novyi
(Case Box #4), and Salmonella largely because our
understanding of their pathogenicity, physiology, and
genetics has led to well defined attenuation strategies
critical for safe use of live bacteria in patients. Each
genus of bacteria is better suited to a specific mechanism.
The predominant organism for immune engagement is
Listeria because of its propensity to invade immune cells.
Facultative enterics, like Salmonella and Escherichia, have
been used for both purposes because of their ability to
stimulate the innate immune system and because of their
genetic plasticity. Obligate anaerobes, such as Clostridium,

Table 3 Bacterial genera investigated as anti-cancer therapeutics

Genus Species

Clostridium C. histolyticum, C. sporogenes, C. novyi,
C. acetobutylicum, C. beijerinckii

Salmonella S. enterica

Listeria L. monocytogenes

Bifidobacterium B. adolescentis, B. longum

Lactobacilli L. acidophilus

Escherichia E. coli
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can localize in hypoxic regions of tumors, a characteristic
that could circumvent adverse features associated with
resistance to radiation therapy or chemotherapy [83].

Immune engagement with bacteria
The intrinsic ability to stimulate the innate immune system
makes bacterial-based cancer vaccination strategies an at-
tractive approach. Many genera of bacteria accumulate in
the tumor microenvironment and once there can convert
the tumor microenvironment (TME) through proinflam-
matory responses. Tumor-colonizing bacteria alter the im-
mune suppressive environment of tumors and make them
immune stimulating. This conversion can be achieved
through different approaches, such as (1) incorporation or
cloning of adjuvants into the bacteria, (2) cloning highly
immunogenic antigens as an alternative for neo-antigens,
(3) encoding with immunogenic cytokines which evoke
anti-tumor immune responses, (4) cloning of checkpoint
inhibitors into the bacteria, or (5) depletion of immune
suppressing macrophages or myeloid-derived suppressor
cells (MDCS). Species that have been investigated for this
approach include attenuated Listeria monocytogenes, Sal-
monella enterica, and Clostridium novyi-NT. All of these
bacteria selectively survive and multiply in the TME. For
example, attenuated Listeria monocytogenes have been de-
signed to deliver recombinantly-expressed tumor-specific
antigens [84]. Similarly, strains of attenuated Salmonella
enterica have been engineered to secrete biologically-active
cytokines such as IL-2 [18, 85].

Many classes of microbial anticancer therapies rely upon
induction of immunogenic cell death (ICD) to propagate
effective anti-tumor immunity. ICD is recognized as a crit-
ical process that initiates the tumor-immunity cycle and
ultimately leads to an adaptive immune response [86]. In
contrast to tolerogenic cell death and other forms of
tumor cell demise, ICD is characterized by three distinct
molecular events which are necessary to prime and acti-
vate tumor-infiltrating dendritic cells: (1) translocation of
calreticulin from the endoplasmic reticulum to the cell
surface (i.e. ecto-calreticulin), (2) passive extracellular

Box 3 Case Examples: Listeria

Listeria activates the NAPH-oxidase pathway resulting in high

levels of reactive oxygen species (ROS) that induce immunogenic

tumor cell death [223, 224]. When Listeria was used to deliver

natural-killer (NKT) cell-activator alphagalactosylceramice (αGalCer),

NKT cells were recruited to the tumor microenvironment (TME).

This recruitment resulted in immune stimulation of CD8 T cells to

Mage-b and a nearly complete elimination of metastases [225].

Listeria also converts subpopulations of immune suppressive

MDSCs into immune-stimulating myeloid-derived suppressor

cells (MDCSs), producing high levels of IL-12 [169]. Listeria

infects macrophages (CD11+ cells) in metastases and alters their

function to favor immune stimulation [84]. Stimulation of

CD8 T cells contributes to the elimination of metastases [84].

Since Listeria infects tumor cells, which may present Listeria

antigens on their membrane, it is that suggestive Listeria-specific T

cells killed the tumor cells. Listeria also reduce the Treg population

in the TME, which correlated with improved efficacy of Listeria-

Her2/neu in mice with Her2/neu-expressing cancers [226].

Box 4 Case examples: Clostridium novyi

Clostridium novyi-NT (C. novyi-NT) is an attenuated strain of

Clostridium novyi, a spore-forming, Gram-positive, obligate

anaerobe that germinates in hypoxic tumor environments. This

strain lacks the alpha-toxin gene, which is the major necrotizing

toxin responsible for Clostridium species pathogenicity [76, 77].

When administered intravenously (IV) or intratumorally (IT), C.

novyi-NT spores replicate within the hypoxic regions of tumors,

eliciting robust tumor lysis in animals including companion dogs

bearing spontaneous solid tumors. The anti-tumor effect of C.

novyi-NT has also been observed in humans in two clinical trials

sponsored by BioMed Valley Discoveries. In a Phase I study of C.

novyi-NT in patients with advanced solid tumor malignancies, a

single IV injection of C. novyi-NT spores was shown to cause

tumor destruction in a metastatic lesion of a patient with colon

cancer. In another Phase I study it was determined that a single

IT injection of C. novyi-NT is feasible and it led to significant

destruction of injected tumor masses in more than a third of

patients treated. The most common toxicities are fever and

tumor inflammation, which are expected due to the nature of the

therapy. Preliminary findings indicate that C. novyi-NT induces a

tumor-specific T-cell response. Future clinical studies will build on

emerging pre-clinical data of the combination of C. novyi-NT with

immune-checkpoint inhibitors.

It is worth noting that spores of the obligate anaerobic strain C.

novyi-NT germinated exclusively in hypoxic tumor tissues but

not in non-malignant hypoxic lesions [29, 227], underscoring the

tumor-targeting specificity of obligate anaerobes. Suggestive

evidence of immunogenic tumor cell death through ROS by C.

novyi-NT has been found as well. Mice cured from CT26 tumors

by C. novyi-NT were protected from rechallenge with the same

tumor cells, indicating underlying immune-based mechanisms

[26]. Since C. novyi-NT kills tumor cells through ROS, immunogenic

tumor cell death may have led to epitope spreading and rejection

of CT26 tumors.
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release of high-mobility-group box 1 (HMGB1) from the
nucleus, and (3) extracellular release of ATP [87, 88].
These molecular “danger” signals collectively function as
damage-associated molecular patterns (DAMPs) which
recruit professional antigen-presenting cells into the TME
which can then uptake tumor-associated antigens released
from dying tumor cells.
Bacterial-based vectors naturally stimulate the innate

system through activation of multiple immune pathways.
Diversity among membrane components between bac-
terial species manifests in differential expression and
presence of structurally-conserved pathogen-associated
molecular patterns (PAMPs). These molecules include fla-
gella, pili, adhesins, lipotechoic acid and lipopolysacchar-
ide and each activates specific toll-like-receptor (TLR)
family members to elicit distinct innate immune-signaling
cascades that ultimately translate to a comprehensive
immune signature unique to each bacterial organism
[89]. Different bacteria engage the innate immune sys-
tem in distinct ways including repolarization of tumor
associated macrophages (TAMs) from an immunosup-
pressive pro-tumor M2 phenotype to a M1 anti-tumor
phenotype; selective elimination of both peripheral and
tumor-associated myeloid derived suppressor cells
(MDSCs); and promotion of dendritic-cell maturation
at the tumor site [90]. CD8+ T cells are a major player
in the adaptive antitumor immune response [26, 91]. A
bacterial infection establishes an inflammatory environ-
ment that sensitizes CD8+ T cells to low-density tumor
antigens by enhancing proximal T-cell receptor (TCR)
signaling [92].

Direct tumor destruction with bacteria
In addition to their intrinsic anti-cancer effects, bacterial
vectors can be genetically engineered or modified to ex-
press proteins with direct tumoricidal properties [18].
Because of their ability to host large amount of foreign
DNA, bacteria can be used as a platform for synthetic
biology and the construction of entire functional genetic
circuits [93]. Bacteria have the capacity to accommodate
heterologous DNA of larger than 300 kb [94]. The possi-
bility of delivering ubiquitously-toxic molecules relies on
the bacterial ability to selectively colonize, proliferate
and express genes only in tumors [95]. This specificity
is maintained by introducing stable genetic circuits
that are selectively responsive to unique qualities of
the TME, such as differential pH, nutrient and/or oxy-
gen availability [96, 97]. To further limit toxicity,
quorum-sensing systems have been developed that
focus expression to tumors and prevent expression in
normal tissue [98].
The most prominent bacterial toxins exploited as

therapeutics are pore-forming cytolysins derived from
Escherichia coli [99, 100], or Staphylococcus aureus

[101, 102]. These molecules are natively expressed by
bacteria, easily secreted, and induce apoptosis in mam-
malian cells [102–104]. They are secreted as monomers
that form multimeric pores after incorporation into the
membranes of eukaryotic cells [105–107]. Several cyto-
toxic cytokines that have been explored are FAS ligand
(FASL), TNF-related apoptosis-inducing ligand (TRAIL)
and TNFα [25, 108–111]. In addition to being immuno-
genic, these molecules directly induce apoptosis [25] and
are more toxic to cancer cells than normal cells [25, 108].
As therapeutics, TNFα and TRAIL are effective against
bladder, breast, colon, glial, lung, ovarian, pancreatic, pros-
tate, and renal cancer cells [25, 112]. However, these cyto-
kines cannot be administered systemically because they
would induce significant toxicity. Localized production by
bacteria colonized within tumors obviates this problem
and focuses treatment on the cancerous lesion.
Immune-cell-targeting bacteria, such as Listeria mono-

cytogenes, can reduce tumor mass by delivering radio-
activity. For example, 188-rhenium has been coupled to
Listeria through anti-Listeria antibodies and shown to be
effective against mice with pancreatic cancer [113, 114].
Bacteria can also be engineered to deliver siRNA. To
achieve this strategy, E. coli has been transformed to tran-
scribe shRNAs from a plasmid containing the invasin gene
inv and the listeriolysin O gene hlyA. These two genes en-
code bacterial factors that are needed for transfer of
shRNAs into tumor xenografts [115].

Combination of viruses and bacteria with other
modalities
The greatest therapeutic strides with oncolytic platforms
are likely to be achieved for diverse patients through
multipronged pharmacological and immunomodulatory
approaches. One approach is to identify chemotherapy
drugs that can alter cellular signaling to sensitize tumor
cells to viral replication and/or burst. Cellular DNA
damage, after induction by radiation or chemotherapy,
can augment HSV-1 replication by amplifying viral burst
[116]. Based on these observations, G207 has been eval-
uated for safety and efficacy in combination with radi-
ation for adult and pediatric patients with brain tumors
[117]. Another rationale for utilizing high dose chemo-
therapy has been to use the lympho-depletive effects to
counter innate immune cell mediated virus clearance.
Encouraging preclinical results from this approach have
resulted in a clinical trial (NCT00450814) wherein safety
and efficacy of measles virus-NIS has been tested as a
stand-alone therapy and in combination with cyclo-
phosphamide. While chemotherapy is known to have
immune suppressive effects, manipulating the timing of
chemotherapy with viral agents can also exploit the de-
velopment of anti-tumor immunity due to the release
of chemotherapy-induced lymphopenia during the time
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of infection and hence tumor antigen presentation. This
allows for expansion of tumor-selective T cells to
maximize antitumor benefits [118, 119].
The greatest attention has been paid to combination with

checkpoint-inhibitory antibodies [120–124]. The recent
success of immune-checkpoint blockade with humanized
antibodies blocking negative regulatory receptors such as
CTLA-4 and PD-1 has brought forth renewed interest in
enhancing virus mediated anti-tumor immunity in conjunc-
tion with these agents. A randomized open Phase II study
evaluating the combination of talimogene laherparepvec
with ipilimumab (a humanized anti-CTLA-4 antibody ther-
apy) in patients with advanced melanoma revealed a greater
antitumor activity of the combination without increasing
adverse events [125]. The combination of T-VEC and
anti-PD-1 immunotherapy modulates the TME and pro-
motes intratumoral T-cell infiltration resulting in overall
and complete responses among patients with advanced
melanoma [126]. Oncolytic viruses have been shown to
recruit and provide cytokine support to CAR-T cells
[127–129]. Many of these strategies have demonstrated
a favorable toxicity profile, high overall-response rates,
and marked intra-tumoral T cell infiltration and
anti-tumor T cell responses [121, 126].
While many bacterial-based therapeutics impart signifi-

cant single agent activity, combination with other modal-
ities may increase efficacy. Bacterial proliferation is often
specific to the immune-privileged necrotic/hypoxic re-
gions of solid tumors [130, 131], sparing the well-perfused
regions that will eventually grow back. Traditional cyto-
toxic therapies, such as chemotherapy and radiation ther-
apy, are most effective against cells in those well-perfused
regions. Combining bacteria with these cytotoxic ther-
apies generates synergistic effects [24, 132, 133]. An-
other strategy employed in combination with bacteria
is the expression of cleaving enzymes that activate pro-
drugs specifically in the TME [134]. For example, deliv-
ery of HSV-TK with Salmonella converts gancyclovir to
its toxic form and results in a dose-dependent reduc-
tion in tumor burden [135]. Similarly, Listeria has
been used to deliver prodrug-converting enzymes like
purine-nucleoside phosphorylase and a fusion protein
consisting of yeast cytosine deaminase and uracil
phosphoribosyl transferase [136].

Non-living bacterial strategies
Non-living bacteria-based therapies are alternative strat-
egies that have several advantages over living organisms.
This category of therapies includes bacterial minicells,
cell-wall complexes, outer-membrane vesicles, and other
bacterial derived therapies [137–139]. Bacterial minicells
are small chromosomeless bacterial particles that contain
all the natural and recombinant components of their par-
ent cells yet are unable to divide and are non-infectious.

In addition to being as amenable to recombinant engin-
eering as their parental progenitors (i.e. can be engineered
to carry oncolytic proteins, for example), minicells have
limited metabolic activity and can be stably loaded with
small-molecule cytotoxic drugs by passive diffusion.
Site-specific immunomodutors (SSIs) are composed of

components of specific bacterial pathogens. When ad-
ministered subcutaneously, SSIs result in a recruitment
and activation of innate immune cells (including macro-
phages and NK cells) in the organ in which the bacterial
pathogens, from which they are derived, commonly
causes infection. For example, QBKPN, derived from a
lung pathogen (Klebsiella), stimulates a lung-specific
anti-cancer immune response, including macrophage re-
cruitment and M1 polarization, NK cell recruitment and
activation, and upregulation of the NKG2D pathway
[140]. QBKPN reduces lung-cancer burden in mouse
models and downregulates PD-1 and PD-L1 systemically
in lung-cancer patients [140].

Prevention with microbial therapies
Microbial therapies have the potential to prevent cancer
by several distinct dimensions. First, microbiota can be
manipulated to destroy tissue, which can be utilized as a
form of cancer prevention. Microbial treatment of a neo-
plastic lesion may serve not only to eradicate the lesion,
but also stimulate an immune response. That response
may, in turn, prevent subsequent invasive cancer. Cancer
prevention by tissue ablation forms the basis for many
contemporary cancer prevention strategies targeting par-
ticularly high-risk individuals, including prophylactic
mastectomy, oophorectomy, colectomy, and thyroidec-
tomy for significant reduction in the incidence of subse-
quent breast cancer, ovarian cancer, colon, and thyroid
cancer, respectively [141]. A second preventative approach
would be manipulation of the microbial pathogens that
drive tumorigenesis and are associated with an altered
composition of commensal microbiota (dysbiosis). Mi-
crobes are estimated to be involved in 15% to 20% of can-
cer cases. Preclinical studies demonstrate that modulation
of inflammation, DNA damage, and metabolite produc-
tion are potential mechanisms of oncogenesis or tumor
suppression, which may be altered with changing the mi-
crobial composition [142]. A third approach would utilize
microbial prophylactic vaccines to target cancers with viral
etiology, similar to HPV and HBV vaccines [143–145]. A
fourth strategy would be enhancement of the immune sys-
tem response by modifying dendritic cells (DCs) to im-
prove vaccine potency.

Lessons learned from clinical studies
Lessons from trials with oncolytic viral therapies
In the last two decades, numerous clinical trials have been
initiated with oncolytic viruses. These trials have taught
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many lessons about the mechanisms of cancer vaccination
and how to select the most appropriate patients (see the
Mayo Clinic Experience with Virotherapy, Case Box 5).
For example, experience with cancer vaccines has demon-
strated that targeting tumor-specific antigens alone is
likely insufficient to generate effective anti-tumor immun-
ity and to prevent immune escape. Optimal T-cell re-
sponses come from not only the engagement of the T-cell
receptor binding to the MHC-peptide complex (signal 1)
but also to a second signal with cytokine stimulation or a
costimulatory molecule (signal 2). Two FDA-approved
cancer vaccines highlight this concept. Sipuleucel-T
(Provenge), an autologous dendritic cell vaccine contains
a fusion protein (PA2024) consisting of the target antigen
(prostatic acid phosphatase) as well as immunostimulatory
GM-CSF, which can augment dendritic cell activity and
maturation. Similarly, T-VEC produces GM-CSF to en-
hance immunogenicity [146].
An intriguing story has emerged suggesting that effect-

ive cancer immunotherapy can promote “antigen spread”
[137]. The notion of antigen spread suggests that im-
munogenic cell death of target antigen-expressing tumor
cells release non-targeted antigens that prime subsequent

adaptive immune responses against non-targeted antigens.
This phenomenon has been observed among patients
treated with PROSTVAC, which is a prostate cancer vac-
cine that contains transgenes for prostate-specific antigen
(PSA) and three T-cell co-stimulatory transgenes: B7-1
(CD80), leukocyte function-associated antigen-3 (LFA-3),
and intracellular-adhesion molecule-1 (ICAM-1) [138,
139]. This observation suggests that T-cells specific for
tumor-antigens not present in the initial vaccine construct
may be an important additional mechanism of action and
potentially indicative of a favorable immune response.
Numerous studies investigating the role of innate

anti-viral defense responses in ocolytic viral therapy have
uncovered that rapid virus clearance minimizes the initial
burst of tumor cells and thus limits virotherapy by nega-
tively regulating virus lytic tumor destruction [147]. While
infection-induced host responses can clear the virus, this
initial inflammatory response to viral infection is also
thought to be an essential step leading to the influx of
antigen presenting cells and the development of subse-
quent anti-tumor immunity [148]. The Yin-Yang balance
between innate virus clearance limiting therapeutic index
and the stimulation of host anti-tumor immunity has

Box 5 Case examples: Mayo clinic experience with virotherapy

Since its establishment in 1997/1998, the Virotherapy Program at Mayo Clinic has carried out multiple clinical trials using adenovirus,

measles virus, reovirus and vesicular stomatitis virus (VSV) platforms. As with many such trials at other Institutions, the road to establishing

these trials has typically been very long, expensive and full of new learning opportunities. The overwhelming theme, from the hundreds of

patients treated so far, has been that virotherapies have largely proved safe. However, there have been exceptions to this – with one patient

treated by intra-tumoral injection of a VSV engineered to express IFN-ß dying days after the virus injection. The cause of this most serious of

serious adverse events (SEA) is still being investigated. However, it is clear that virus replication in the liver-metastatic tumor of this patient

was very robust and tumor lysis syndrome along with possibly liver-toxic levels of IFN-ß may have contributed. Conversely, although rare, the

program has also seen individual cases of great therapeutic success. Thus, one patient with advanced multiple myeloma treated with the

highest dose of a recombinant measles virus underwent a dramatic regression of her disease which has proved to be durable out to 4 years

following a single-shot treatment. As for the SAE at the other end of the spectrum, it is not completely clear whether this impressive

success for virotherapy represents the result of pure oncolysis of the measles virus in the myeloma tumors, immune stimulation following

such a high dose of systemically delivered virus or a combination of both.

Perhaps the most important lesson that has come out of these hundreds of treated patients and the millions of dollars spent, is that

when great successes, or tragedies do happen, it is critical that all such trials are supported by correlative studies put in place to

understand the mechanistic basis behind each one. In this light, even a terrible SAE can provide critical information that will help us to

advance the field. For example, deep sequencing of a patient’s tumor which supported (potentially life threatening) abnormally high

levels of virus replication can lead to a profile of patient selection criteria which may help to avoid such events in the future. Such

information may also help us to develop adjuvant treatments which take tumors predicted to be low-level responders (low virus

replication) to a more permissive state. In addition, a full and comprehensive immune-monitoring capability will allow investigators to

correlate positive, negative or a lack of clinical responses to immune-virotherapy with host responses, including cytokine profiles.

Therefore, it is strongly recommended that comprehensive immune, genomic and virological monitoring assays be put in place

before trials recruit their first patients. In this way, the hope is that the current scenario – multiple patients treated with low toxicities

and only intermittent responses (good or bad) – may soon be replaced by the preferred situation where the majority of enrolled patients

respond well as a result of being pre-selected for specific immune-virotherapies based upon a clear knowledge of their likelihood to respond.
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emerged as a heavily debated subject, wherein host
innate-defense responses are touted as being both benefi-
cial and detrimental to therapy. Most likely the situation is
further compounded by variables that impact host re-
sponse such as the virus platforms used, different tumor
types and stages, TME, and prior-treatment status of the
patient.

Lessons from trials with bacterial therapies
Results from preclinical and clinical studies suggest that
tumor-targeting bacteria may be a useful option for cancer
treatment (see Case Box #6). However, toxicity will be a
major challenge for their clinical development. A success-
ful outcome may be achieved only when toxicities associ-
ated with the therapeutic infection can be effectively
managed without compromising the therapeutic effect.
Despite the complex safety considerations, the FDA has
allowed several clinical trials with tumor-targeting bacteria
and bacterial vaccines designed to elicit a systemic
response (Table 4) [10, 149–152]. Clinical studies on com-
panion dogs with spontaneous tumors have also been con-
ducted [10, 153, 154]. The tumor-targeting bacterial
strains tested in both canine and human studies showed
reasonable safety profiles in general and promising antitu-
mor activities in some studies. It has become clear even
with the limited clinical studies that substantial bacterial
colonization is required for any significant clinical benefit.
Therefore, careful selection of patients with tumors likely
to provide an optimal niche for bacterial colonization will
be important in the design of clinical studies. As tumor
necrosis/hypoxia is a critical prerequisite for colonization
of some bacteria, tumor biopsy or noninvasive companion

diagnostic approaches based on angiography and hypoxia/
necrosis imaging may help define such a patient popula-
tion [155–157].
Because of the potential toxicity of these therapies,

knowing when and how to intervene are critical issues
which will have direct impact on clinical outcomes. Dose
determination is another important issue with the
clinical development of bacterial therapy. Dose escal-
ation is a standard practice in Phase I clinical trials.
However, the effective dose for live bacteria depends
more on the target tumor tissue where they can multiply
than on the administered dose. A large tumor with
extensive necrosis and minimal infiltration of inflamma-
tory cells is more likely to support a robust bacterial
infection, resulting in pronounced tumor response and
toxicity, regardless of the administered dose. In contrast,
a small tumor or a tumor with minimal hypoxic/necrotic
regions is unlikely to show significant response even if a
large number of bacteria are administered.

Important scientific questions
To fully capture the potential of microbial therapy it
would be beneficial to describe the design space as com-
prehensively as possible. An optimal microorganism must
(1) target only tumor cells, (2) have tolerable toxicities or
side effects, and (3) be generically stable. These organisms
would act by (1) engaging the immune system, (2) redu-
cing tumor-associated immunosuppression, or (3) deliver-
ing anticancer agents (e.g. interleukins, sh-RNAs, and
toxins like Listeriolysin O or α-haemolysin, which would
cause cell lysis). Targeting could be enhanced by generat-
ing microorganisms that (1) selectively infect poorly vas-
cularized tissues not accessible to drugs; (2) specifically
target precancerous cells, metastatic tumors, and/or dor-
mant cancer cells; (3) target tumor neovascularization; or
(4) have organ-specific affinity (e.g. respiratory viruses).
Microbial cancer therapy could be effective beyond direct
treatment as (1) preventatives and vaccines, or (2) by pre-
venting tumor recurrence.
To achieve these goals, many questions must be

addressed about the interactions of the microbes with
tumors and tumor cells. Each of the following questions
is a furtive research area that, when addressed, will be
instrumental in the development of effective microbial
anticancer therapies.

� What mechanisms control (1) microbial tropism to
tumors and metastases, (2) invasion and microbe-
mediated lysis of tumor cells, (3) microbe-initiated
immune responses, and (4) processing and
presentation of microbe-delivered or tumor-cell
derived antigens?

� How can toxicities and deleterious side effects be
managed, eliminated or prevented?

Box 6 Case examples: Saltikva (MDB401)

Saltikva is attenuated Salmonella armed to produce IL2. It

differentiates normal environments from the abnormal, typically

hypoxic environments found in solid tumors. There is a

preference of varying degrees for different tumor types, but also

a clear, ten-thousand-fold preference for tumors over organs such

as the healthy liver. Taking residence in tumors and replicating

there, this strain of Salmonella incites a host immune response

and turns the cancer into a bystander to be destroyed. This

ultimately leads to destruction of the tumor, and formation of

memory to counter the growth of metastases. Saltikva was not

envisaged as a monotherapy. Because it is orally bioavailable and

safe, it may synergize with targeted therapies or chemotherapies.

Veterinary application of MDB401 has been out-licensed and is on

track for market introduction in 2018/19. Next steps in the human

development program for Saltikva include clinical trials in the first

target, sarcoma of adolescents and young adults.
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� What mechanisms can be introduced into bacteria
and viruses to increase genetic stability?

� Can the immune system be selectively evaded to
limit microbial clearance and inactivation?

� Can new targets be identified for microbial
recognition of tumor cells?

� What is the optimal balance between microbe-
initiated immune stimulation, microbial attenuation,
and immune evasion?

� Are there cancer types particularly sensitive or
resistant to microbial therapies? What biological
characteristics make a tumor more sensitive or
resistant to a microbial therapy?

� Can microorganisms prevent the transformation of
precancerous cells into tumor cells?

� Can microorganisms eliminate residual cancer cells
after treatment?

� Can companion diagnostics be used to predict the
response to microbial therapeutics?

Most of the questions about the mechanisms of micro-
bial therapies can be classified into four categories: simu-
lation of the immune system, control of toxicity, control
of delivery, and safety.

Immune stimulation and engagement
To date, the complex effects of a viral tumor infection on
the TME and the consequences for the tumor-infiltrating
immune cell compartment are poorly understood. There
is growing evidence that a tumor infection by an oncolytic
virus opens up a number of options for further immuno-
modulating interventions such as systemic chemotherapy,
generic immunostimulating strategies, dendritic cell-based
vaccines, and antigenic libraries to further support clinical

efficacy of oncolytic virotherapy [126]. More specifically,
can microbial infection of an immunologically “cold”
tumor (i.e. low mutational load and/or nonresponsive to
immune checkpoint inhibitor monotherapy) induce con-
version into a “hotter” milieu where novel endogenous
tumor epitopes are now presented more efficiently to the
immune system?
Novel approaches are needed to alter the immunosup-

pressive microenvironment of tumors and facilitate the
recognition of tumor antigens. The lack of immune-cell
infiltrates within tumors negatively correlates with the
response to immunogenic cell death (ICB) and patient
survival [52, 158]. Improved understanding of the
critical role and mechanisms of Batf3 dendritic cell
antigen uptake and cross-presentation may yield novel
insights to optimize dendritic cell-based vaccine strategies.
Because innate immune responses against infection and
malignancy utilize similar evolutionarily conserved path-
ways (i.e. cGAS-STING pathway) microbial anticancer
agents may be particularly effective at engaging and ampli-
fying anti-tumor immunity [159]. Batf3-dependent
CD103+/CD8α+ dendritic cells (DCs) are critical for
cross-presenting tumor antigens in tumor draining lymph
nodes (TDLNs). Cross presentation allows for priming
and expansion of naïve CD8+ T cells that recognize the
cognate antigen [52, 160–162]. Possible strategies to ex-
pand CD103+/CD8α+ DCs include systemic administra-
tion of FMS-like tyrosine kinase 3 ligand (FLT3L) or
intratumoral delivery of immune adjuvants such as TLR3,
TLR7, and STING agonists.
Bacterial infections of tumors naturally stimulate an im-

mune response. However, it is not entirely clear how intra-
tumoral infections enhance antitumor immune responses.
It has been suggested that the antitumor immune

Table 4 Examples of active clinical studies with bacteria

Biological Agent Bacterium NCT# Indication

IL-2 Salmonella NCT01099631 Liver Cancer

C. novyi-NT Clostridium NCT00358397
NCT01118819
NCT01924689

Solid Tumors

APS001F Bifidobacterium NCT01562626 Solid Tumors

JNJ-64041757 Listeria NCT02592967
NCT02625857

NSCLC
Prostate Cancer

JNJ-757 Listeria NCT03371381 Lung Cancer

pLADD Listeria NCT03189030 Metastatic Colorectal Cancer

ADU-623 Listeria NCT01967758 Astrocytic Tumors

ADXS11-001 Listeria NCT01598792
NCT01266460

Oropharyngeal Cancer
Cervical Cancer

CRS-207 Listeria NCT01675765
NCT00585845
NCT02575807

Malignant Pleural Mesothelioma
Adenocarcinoma of the Pancreas
Ovarian Cancer

GVAX & CRS-207 Listeria/GVAX NCT02004262 Pancreatic Cancer

In these clinical trials, Listeria do not colonize the tumor microenvironment
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responses result from the infection-induced immunogenic
immune-cell death causing epitope spreading [84]. A
complex immunotherapeutic strategy is needed for a
sustained and robust anti-tumor effect. It is not enough
to administer immunostimulatory cytokines, such as
IL-2 and IL-15, to elicit innate and adaptive anti-tumor
immune responses, primarily involving NK cells and
cytotoxic T-cells, respectively. It is now understood that
tumors avoid immune-mediated elimination by the se-
cretion of immunoinhibitory molecules, recruitment of
immunosuppressive cells, and the upregulation of
immunoinhibitory checkpoints such as CTLA-4 and
PD-L1 [163]. Studies addressing the questions of how
bacteria kill tumor cells are still limited. Additional
mechanisms will surely be revealed once data from
more studies on this issue become available.

Control of efficacy
One of the major questions affecting bacterial therapy
is how to produce a high enough local concentration of
a therapeutic. Compared to viruses, bacteria are larger
and can be used to deliver multiple gene products.
However, bacteria are small relative to mammalian cells
(about 1000-fold by volume), meaning that any pro-
duced protein must be effective at low concentrations.
Regardless of the mode of action, efficacy depends on
the local concentration of the therapeutic molecule. A
high local titer can be achieved by manipulation of bac-
terial gene expression, metabolism, or protein secretion.
The local tumor concentration could also be enhanced
by increasing tumor colonization and proliferation. Bet-
ter understanding of these mechanisms could greatly
improve bacterial therapy.
In comparison, viral therapeutics have limited coding

capacity due to small genomes and are limited to deliv-
ering only a small number of genes. In the context of de-
livering an immunomodulatory gene sequence, most
viral vectors deliver a single gene (e.g. GM-CSF, IL-12,
or IFN-α2b) and conflicting data raise questions as to
whether this is sufficient for immune activation robust
enough to break peripheral tolerance to tumor antigens.
Strategies to address this may include addition of other
immunomodulators (e.g. TLR agonists such as imiqui-
mod) to therapeutic regimens, and/or use of viral vec-
tors encoding regulatory RNA sequences implicated in
the global regulation of immunosuppression or pathways
at the level of the transcriptome.

Control of colonization and delivery
The control of localization and delivery is essential for
bacterial therapies. Focusing therapy specifically to ma-
lignant tissue can greatly increase efficacy and reduce
toxicity to normal tissue. Early clinical trials with

bacteria showed that facultative anaerobes colonize hu-
man tumors, but at lower densities and with more het-
erogeneity than in mouse models [150]. Although much
is known about the mechanisms that control bacterial
tumor colonization, more strategies are needed to har-
ness these mechanisms and make the organisms perform
optimally in human tumors.
There are three categories of bacterial therapies

based on how they accumulate in tumors: obligate an-
aerobes (e.g. Clostridium and Bifidobacterium), faculta-
tive anaerobes (e.g. Salmonella and Escherichia); and
immune-cell-targeting bacteria (e.g. Listeria). The spores
of obligate anaerobes germinate exclusively within the
hypoxic regions of the cancer [10, 26, 164]. Vegetative
anaerobes cannot survive in oxygenate environments of
normal organs and can only survive in the anoxic regions
of tumors [130, 165]. Facultative anaerobes accumulate in
tumors via several interacting mechanisms. After intraven-
ous injection, bacteria flood into tumors following inflam-
mation [166] and become entrapped in the vasculature
[167]. Small molecules produced by tumors draw bacteria
into the tissue, where they preferentially replicate in the
favorable microenvironment [79, 168]. Listeria accumu-
lates in tumors by infecting (MDSC) [113, 169, 170].
These cells are present in blood in large numbers of pa-
tients and mice with cancer [171], and are selectively
attracted to the TME [172]. Once at the tumor site,
Listeria spreads from MDSC into tumor cells by
polymerization of actin filaments and production of
the pore-forming enzyme listeriolysin O [173]. For all
three types of bacteria, immune suppression prevents
clearance in the tumor environment but not in nor-
mal tissues, which lack immune suppression [174].

Delivery of viral particles
Because viral particles are inert outside of host cells,
classic delivery of naked virus depends on passive accu-
mulation. High viral titers can be safely administered
when using a highly tumor-selective virus and tumors
with leaky vasculature. To be effective, the inoculum
needs to remain in the circulation for sufficient time to
allow passage through the tumor vascular bed. This
becomes a particular issue for viral species that have not
evolved to spread in the blood, and so have little or no
protection against complement or removal by the reticu-
loendothelial system [175, 176]. Even species that are
well adapted to evade these innate immune responses
are likely to be severely restricted in their ability to be
delivered systemically when faced with an anti-viral
adaptive immune response, especially circulating neu-
tralizing antibodies. This might be due to previous vacci-
nations (e.g. vaccinia, measles), prior exposure to a virus
(e.g. adenovirus) or simply as a result of repeated treat-
ment with the same viral therapy.
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The easiest way to avoid such delivery hurdles is to
directly inject the virus into the tumor. Intratumoral ad-
ministration would circumvent antiviral immune re-
sponses, enable more direct contact with cancer cells
and reduce systemic toxicity [177]. However, this
method of administration creates another set of issues,
including the need for a surgeon to perform such proce-
dures; an inability to target multiple metastases; reaching
areas of the tumor beyond the needle tract; and ensuring
the virus is not delivered to necrotic regions or simply
escapes the tumor.
Several strategies have been developed to try to enhance

the systemic delivery of oncolytic viral therapies. One
approach has been to chemically modify the viral particle
itself [178], such as chemical attachment to large inert
molecules (notably polyethylene glycol, PEG) [179–181]
or wrapping of the viral particle in a synthetic lipid enve-
lope [182] or polymer coat [183]. Other strategies include
complement inhibition [184] and cytokine conditioning to
mobilize a cellular population upon which the virus can
hitchhike [185]. These approaches have successfully dem-
onstrated the ability to de-target viruses from non-tumor
cells (notably hepatocytes) and to increase circulation
time. However, they often suffer from an inability to reli-
ably release infectious virus in the tumor. Because the
modifications often inhibit the natural routes of viral cell
entry, they need to be selectively removed within the
tumor or alternative cell entry routes developed. Similar
approaches involving enzymatically removing immune ac-
tivating surface molecules (such as through deglycosyla-
tion) [186] or genetic engineering of the virus itself (such
as swapping of coat proteins between related viral strains
that have evolved to spread differently in a host) [187]
have demonstrated greater successes.
Another strategy that has demonstrated success in

pre-clinical models is to pre-infect ex vivo cells that are
known to traffic to the sites of tumor beds following in-
fusion into the patient. In this way, cells (known as “car-
rier cells” or “Trojan horses”), including some stem cells
or immune cell populations that naturally traffic to and
infiltrate tumors, can be used as delivery vehicles to ac-
tively carry the viral payload to the tumor target [188].
This has the additional advantages that the virus may be
concealed from innate or adaptive immunity effectors in
the circulation and may replicate within the carrier cell,
so further increasing viral delivery into the tumor. How-
ever, there are also additional complexities, such as en-
suring cell trafficking is not inhibited by viral infection,
defining doses and manufacturing primary cells or cell
lines for clinical use. In addition, the cells that are most
commonly attracted to tumors tend to be involved in
immunosuppression or disease progression, so care must
be taken to ensure they cannot provide pro-tumor prop-
erties. However, it has also been demonstrated that some

viruses naturally infect lymphocytes in circulation and
utilize these cells as in situ carrier vehicles to enhance
spread within a host. These phenomena have also been
shown to occur in the clinic resulting in enhanced deliv-
ery of oncolytic viruses, such as reovirus [189]. As such,
there is potential to further exploit these naturally occur-
ring pathways to enhance systemic delivery of oncolytic
viruses in general.

Safety
Modern microbial therapies have an excellent safety rec-
ord. In almost all oncolytic virus trials to date, few adverse
events have been attributed to replicating viruses. How-
ever, off-target effects and viral mutation/transmission re-
main ongoing concerns. An open question is the optimal
administration of oncolytic viruses. When replicating vi-
ruses are administered systemically, non-malignant cells
are spared because they retain more robust anti-viral de-
fenses than transformed cells. Infected normal cells either
destroy the oncolytic virus or commit apoptotic suicide
resulting in a self-limiting infection. As demonstrated by
intralesional administration of T-VEC, distant tumor re-
gression suggests that in situ vaccination has primed a sys-
temic immune response (the abscopal effect). It remains
unclear if systemic administration can improve response
rates without additive or synergistic toxicity. Because
human bodies have evolved to fight infections, immunity
to microbial agents may develop in response to systemic
administration. Major challenges in the development of
systemic delivery are serum neutralization and hepatotox-
icity. A neutralizing antibody response has been observed
in almost every patient treated with viruses, but has not
been correlated with a response or lack thereof.
Numerous tumor-targeting bacterial strains have shown

a therapeutic benefit in experimental tumor models for
decades, and yet clinical development has been slow to
follow. Safety is a major concern for therapy with live bac-
teria, where therapeutic effect is intertwined with toxicity.
Preclinical pharmacologic and toxicologic studies with live
bacteria have shown satisfactory safety profiles in both
healthy and tumor-bearing experimental animals [28, 29].
However, robust intratumoral colonization is required for
optimal therapeutic effect. Such an aggressive infection,
even confined within the target tumor, will inevitably
result in clinical symptoms and laboratory findings that
may be considered dose-limiting toxicities (DLTs). This di-
lemma is perhaps best illustrated in the therapy with
oncolytic bacteria. The objective for oncolytic bacterial
therapy is essentially to convert a solid tumor into an ab-
scess that forms when an extensive bacterial colonization
and subsequent tumor lysis take place [10, 190]. Abscess
formation is obviously a desired therapeutic effect and a
significant toxicity at the same time. Therefore, whether
or not the abscess should be qualified as a DLT is
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debatable. In this way, it is the very mechanism of
tissue-specific pathogenesis that provides the potency to
be exploited as a curative. Because of the plasticity of bac-
teria, the overarching question is whether clever genetic
manipulations can be made to utilize endogenous mecha-
nisms and shift the balance toward an effective therapy
with minimal safety concerns [98].

Where next?
Three issues that are essential for the development of mi-
crobial therapies are 1) finding the most appropriate pre-
dictive animal models, 2) development microbial therapies
into cancer prophylactics, and 3) defining standard tech-
niques for GMP manufacture.

Better animal models
Animal models are invaluable to the understanding of
neoplastic development and to the evaluation of novel
therapeutics. Each model has its benefits and deficien-
cies which should be carefully considered prior to the
study. The implementation of multiple models over the
course of the translational development path will aid in
recapitulating as many aspects of human biology as
possible. The choice of model should balance cost and
efficiency with accurate representation of pathology and
progression.
Allo- and xenotransplant models provide time-saving

experimental protocols and less expensive animals than
more complicated models. The use of immunocomprom-
ised xenotransplant models can provide information about
the efficacy of oncolytic therapies, but are inappropriate
for immunotherapies. Immune-deficient mice lack the
ability to develop an adaptive memory response against
both the microbe and the implanted tumor. Although
allo-transplant models are immunocompetent, the speed
of tumor growth in transplant models can prevent de-
velopment of systemic or TME immune states present
in human cancer [191].
Genetically engineered mouse models (GEMMs) may

more acurately recapitulate essential aspects of human
cancer [192]. Autochthonous tumors form in GEMMs
from a single cell and grow with a time course similar to
human cancer. This slower rate allows more natural
structural maturation of the TME [193] and more
closely approximate the molecular and histopatho-
logical features of human neoplasms [194, 195]. The
major limitations of autochthonous tumors in GEMMs
are their cost, relatively low mutational load, and reduced
clonal heterogeneity. Many GEMMs result in numerous
transformed “cancer-seeding” niches, with uneven syn-
chronies but relatively homogeneous genetics, which can
make GEMMs hard to cure via microbial therapies.
Patient-derived xenografts (PDX), reconstitute the het-

erogeneity of the genomic aberrations seen in human

cancers. This property overcomes the major limitation
of GEMMs, but introduces additional limitations. In this
model, primary human tumor tissue is introduced into
“humanized” mice that have been reconstituted with a
human hematopoietic system [196]. This model can be
cost prohibitive and has several limitations. There are in-
herent deficiencies of the human immune system when
it is developed within a mouse, and tumor cells do not
completely interact with host stromal and immune com-
partments in the local microenvironment. This system is
also limited by the technical challenge of human
leukocyte antigen (HLA) matching implanted tumors
with the immune system of the reconstituted mice.
The use of rodents to determine the safety and efficacy

of novel agents has inherent limitations because infectious
biological agents have co-evolved with mammals and are
species-specific pathogens. The inherent resistance of
mice to some human pathogens makes preclinical testing
of these microbial agents particularly challenging. Alter-
nate models to evaluate the safety and/or efficacy are Syr-
ian hamsters and non-human primates.
Evaluating therapeutic efficacy in veterinary clinical trials

is also a useful approach as it permits safety and efficacy
testing in large spontaneous tumor models [197–202].
Spontaneous canine and feline cancers represent a naturally
occurring heterogeneous model of cancer that resemble hu-
man disease in their histopathological and molecular char-
acteristics [203]. Two important aspects of companion
animals are that (1) the microbiome of pet dogs shares
many features with that of humans [204–207], and (2) the
process of immunoediting occurs over the course of
months to years, a time frame not achievable in murine
models [208]. When considering a large companion animal
trial, it is important to consider the frequency and biology
of tumors which can sometimes be quite distinct from hu-
man disease.

New strategies for microbial-based cancer prevention
Microbial therapies have the potential to be potent can-
cer prophylactics. To be effective, prophylactic vaccines
could (1) target cancers with viral etiology, (2) directly
target precancerous lesions, or (3) enhance the immune
response against precancerous cells. Some cancers have
a viral etiology including liver cancer, cervical, head and
neck, anal cancer, Burkitt Lymphoma, nasopharyngeal
carcinoma, Merkel Cell Carcinoma, Kaposi Sarcoma,
and HTLV-1 associated T-Cell Leukemia/Lymphoma.
While the effectiveness of vaccination against cancers
with viral etiology has been demonstrated for human
papillomavirus (HPV) and hepatitis B (HBV), other vac-
cines are needed to target additional viruses that are
highly associated with cancer, including HCV, MCV,
EBV, HHV-8, and HTLV-1. Microbial autologous DNA/
RNA vaccines could prevent recurrence by targeting
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known tumor-associated antigens. Targeting precancer-
ous lesions would prevent the transformation into tumor
cells. These vaccines could be prepared to target anti-
gens from patient-derived tumors or human tumor cell
lines. Prophylactic vaccines might be useful in cases
where there is known family history risk, including
known genetic determinants that lead to a high risk of
cancer. Microbial-based therapies could also prevent
cancer by eliminating cancer-associated microorganisms,
or by targeting neovascularization and dormant cancer
cells. Microorganisms that target tumor antigens would
also be useful for eliminating residual cancer cells after
treatment.

GMP manufacture
The GMP manufacture of microbial-based cell therapies
is a regulated process that centers on product safety,
consistency, and stability. Any investigational new drug
(IND) application submitted to the United States Food
and Drug Administration (FDA) is required to have a
comprehensive description of the chemistry, manufac-
turing, and control (CMC) information used while gen-
erating the product. The FDA has recently published
detailed information, in the form of an industry guid-
ance, on the information that must be submitted in an
IND pertaining to bacterial- or viral-based biologic
products [209].
Critical to the CMC package for any biological product

manufactured under GMP conditions is the ability to
properly characterize the sterility, purity, identity, potency,
and stability of the drug substance and drug product, in-
cluding its raw materials, and critical intermediates. GMP
manufacture of microbial-based cell therapies begins with
raw materials and a list of each component used in the
manufacturing process. Second to raw materials is the
generation of a seed stock, expansion and characterization
of the microbial Master Cell Bank (MCB), and any further
expansion into a working cell bank (WCB). Key consider-
ations in the manufacture of the seed stock, MCB and
WCB include verification of the absence of any lysogenic
prophage (for bacteria), genome sequence information
characterizing any chromosomal modifications (deletions
and additions), phenotypic confirmation of attenuation,
microbial purity (clonality), cell viability, and the stability,
restriction digest pattern(s), and sequence identity of any
episomal constructs (e.g. bacterial expression plasmids).
The stability of these features within the MCB and WCB
should be characterized over time to gain an understand-
ing of when failure occurs. During early phase production,
a master manufacturing record (MMR) is established
based on at least one process development experience at
the intended manufacturing scale. The MMR is subject to
industry standard Quality Assurance (QA) and Quality
Control (QC) review procedures and sponsor approval

before being accepted for use and employed to officially
codify and record manufacturing steps.
Manufacturing processes are typically divided into up-

stream, downstream, fill/finish, and release testing com-
ponents. For bacterial cell therapies, the upstream
process usually begins with MCB/WCB vial thaw and in-
cludes fermentation and formation of the crude cell
paste. Downstream processing of bacterial cell therapies
terminates after formulation and that process intermedi-
ate is defined as the formulated drug substance. A suite
of release tests is typically performed on the formulated
drug substance prior to advancing to the fill/finish stage.
In fill/finish, the drug substance is individually vialed,
packaged, labeled as appropriate and is now defined as
the drug product. Vialed drug product is subject to fur-
ther release testing and released for stability testing and
use in clinical trials. For non-living bacteria-based prod-
ucts and virotherapies, sterility must also be determined
prior to use. With living bacterial cell therapies, demon-
strable microbial purity is required.

NCI translational research assistance
The National Cancer Institute (NCI) offers translational
research assistance for microbial-based cancer therapies
through programs such as the NCI Experimental Thera-
peutics (NExT) program (Table 5). The NExT program
provides drug discovery and development resources and
expertise to advance promising new therapies to clinical
development. Following a peer-reviewed application
process, biotechnology-based therapeutic products are
supported by an array of contract resources. Intellectual
property (IP) brought in by applicants is maintained by
the originator. Any new IP developed under the contract
is offered to the applicant under exclusive license.
The Frederick National Laboratory for Cancer

Research’s (FNLCR) Biopharmaceutical Development
Program (BDP) is one such contractor used for
development of clinical grade biotechnology products.
Operated by Leidos Biomedical Research Inc., the BDP
facilities include development laboratories, QC analyt-
ical laboratories, and GMP facilities, totaling approxi-
mately 60,000 sq. ft. The production areas within the
GMP facility are designed to ISO 5 (Class 100), ISO 7
(Class 10,000) and/or ISO 8 (Class 100,000) specifica-
tions to achieve levels appropriate for GMP bulk
biologics manufacturing and final filling operations.
The BDP includes capabilities in process development,
GMP manufacturing, analytical testing, QA oversight, and
regulatory strategy (https://frederick.cancer.gov/Science/
Bdp/Default.aspx). Over the past 15 years the BDP has
provided NCI with expertise in developing biologic
products such as recombinant proteins, monoclonal anti-
bodies, immunotoxins, cell banks, immunocytokines,
vaccines, and mammalian viruses. BDP technical expertise
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includes bacterial fermentation, mammalian cell culture,
protein and virus production and purification, and aseptic
fill/finish manufacturing operations. Analytical capabilities
include protein biochemistry, bioanalytical testing,
physio-chemical analysis, virus testing, molecular biology
analysis, stability assessments, and standard quality con-
trol techniques for raw materials and facility operations.
The BDP manufacturing capabilities and regulatory sup-
port are most appropriate for IND-enabling and clinical
use. Once a commercial partner is identified, BDP trans-
fers the technology to the company for commercial manu-
facturing and licensing.
In addition to the NExT program, translational research

resources are available through other NCI and NIH pro-
grams. These programs provide access to drug develop-
ment resources to enable submission of IND applications
to the FDA. Some examples of NIH translational research
programs are listed in Table 5, with website links for fur-
ther details and application instructions.

Guidance for future development: Regulatory
perspectives
The development of new microbial therapies is regulated
by federal regulatory bodies (e.g., the US FDA) to assure
the safety and rights of human subjects for initial clinical
trials. They also ensure that the marketing approval of
these therapies are based on the demonstration of safety
and substantial evidence of efficacy. At least three regu-
latory issues need to be considered for developing mi-
crobial therapies: unintended spreading (shedding) of
therapeutic organisms, demonstration of systemic effect
of oncolytic viruses, and potential infection following
treatment with bacteria-based therapies.

Microbial-based therapies often involve live viruses or
bacteria that can replicate and thus self-amplify. Thus,
one safety concern from a regulatory perspective is that
these microbes may be shed from patients and spread to
individuals who are in close contact. Although genetic
modification may limit the ability of these microbes to be
pathogenic, shedding could still occur, particularly for mi-
crobial agents that are systemically administered. There-
fore, early in the clinical development of microbe-based
therapy, it is important that the clinical-trial design in-
cludes plans to monitor shedding. Such monitoring not
only serves to protect the public health but also provides
information for the design of later-phase trials. The details
of the monitoring program such as sample collection,
monitoring methods, cut-off thresholds and their inter-
pretation, may vary among different microbes. FDA has
published a Guidance for Industry to address these issues
entitled ‘Design and Analysis of Shedding Studies for
Virus or Bacteria-Based Gene Therapy and Oncolytic
Products’ [210]. This guidance can help sponsors and de-
velopers to design appropriate shedding studies.
One of the most challenging issues is how to assess the

efficacy of intratumorally administered oncolytic viral
therapy (IT OVT), a local therapy, in the context of a sys-
temic disease such as metastasis. To address this issue, it
is crucial to consider whether such an IT OVT could lead
to a systemic treatment effect. The measures to take to
demonstrate such an effect could include 1) observation
of an abscopal-like effect showing tumor regressions in
the lesions that are not injected, in particular, visceral le-
sions for an OV given to non-visceral lesions; 2) demon-
stration of prolongation of progression-free or overall
survival in patients who have received an IT OVT

Table 5 Examples of translational research support at NIH

Program Mission/Objective Website link

NCI: Experimental Therapeutics
(NExT) Program

Supports promising new anticancer-drug (small molecule,
biologics) discovery and development projects towards
clinical evaluation and registration.

https://next.cancer.gov/

NCI: Division of Cancer Prevention
(PREVENT)

Supports development in cancer prevention intervention
and biomarkers.

https://prevention.cancer.gov/major-programs/
prevent-cancerpreclinical

NCATS: Bridging Interventional
Development Gaps (BrIDGs)
Program

Advances promising therapeutic agents for both common
and rare diseases through late-stage preclinical development
toward an IND application.

https://ncats.nih.gov/bridgs

NCATS: Therapeutics for Rare and
Neglected Diseases (TRND)
Program

Supports preclinical development of therapeutic drugs to
treat rare and neglected disorders toward the goal of an
IND application.

https://ncats.nih.gov/trnd

NIAID: Translation Resource Tools Supports preclinical and clinical research for vaccines,
diagnostics, and therapeutics.

https://www.niaid.nih.gov/research/therapeutic-
developmentservices

NINDS: Create Bio Program Supports optimization of biotechnology product and
biologics-based therapies for development and IND-enabling
studies, as well as early-phase clinical trials.

https://www.ninds.nih.gov/Current-Research/
Research-Funded-NINDS/Translational-Research/
CREATE-BIO

NHLBI: SMARTT Program Accelerates translation of research for therapeutic candidates
or diagnostic imaging agents from in vivo efficacy to IND
submission for treatment of heart, lung, or blood diseases.

https://www.nhlbismartt.org/
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compared with those who have received control; and 3)
demonstration of a systemic immune response. However,
the latter could only be used as supportive if it is not
accompanied by an improvement in clinical outcome
assessment.
One of the main concerns of bacteria-based cancer

therapy is that these bacteria could cause clinically sig-
nificant infection and sepsis, especially in cancer patients
who may be already immunocompromised due to their
underlying disease and/or from concomitant treatment.
Some invasive procedures may be needed to administer
some of these live bacterial products which may add
additional risks to patients. Thus, in early clinical trials
design, investigators and sponsors need to consider ap-
propriate plans to mitigate these concerns (e.g., anti-
biotic use post administration of live bacterial products).

Conclusion
We hope that this White Paper will serve to nucleate
the growing field of oncolytic microbial therapy. There
is much excitement about the potential of this field to
treat currently-intractable cancers, and to synergize
with other growing modalities such as immunother-
apy. In the process of putting this paper together, we
saw how many parallels exist between bacterial and
viral therapies. We also learned that they both face
similar obstacles to commercialization. By harnessing
a broad set of mechanisms that cannot be achieved
with other strategies, microbial therapies (both viruses
and bacteria) have the potential to create the next gen-
eration of therapeutics and will accelerate our gains
against cancer mortality. Of the many factors that gen-
erate enthusiasm about microbial therapies, the ability
to specifically target malignant tissue and deliver
genetically-engineered payloads are two of the greatest.
Achieving these visions will require integration across
many disciplines, including oncology, infectious disease,
immunology, surgery, manufacturing, preclinical model-
ing, and regulatory affairs. By providing therapies with
unique mechanisms of action, microbial therapies are des-
tined to become integral components of effective cancer
management.
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