14 research outputs found

    UV activation of polymeric high aspect ratio microstructures: Ramifications in antibody surface loading for circulating tumor cell selection

    Get PDF
    The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ???3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer's damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device's cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the selection of CTCs from whole blood were evaluated, which required the immobilization of monoclonal antibodies to channel walls. From our results, we concluded the CTC yield and purity of isolated CTCs were dependent on the substrate material with COC producing the highest clinical yields for CTCs as well as better purities compared to PMMA.close9

    Identifying Where REDD+ Financially Out Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach

    Get PDF
    Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional finescale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD + could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US 3MgCO2e)wouldenableREDD+tooutcompeteoil−palmin553 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US 27 million to secure these areas for 25 years. Higher carbon offset price (US 30MgCO2e)wouldincreasethecompetitivenessofREDD+withinthelandscapebutwouldstillonlycapturebetween6930 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US 380–416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD+ competitiveness in tropical floodplain landscapes; and, providing a robust approach for identifying and targeting limited REDD+ funds

    Change in Siberian phytomass predicted for global warming.

    No full text
    Part I Climate ChangeAn equilibrium model driven by climatic parameters, the Siberian Vegetation Model, was used to estimate changes in the phytomass of Siberian vegetation under climate change scenarios (CO2 doubling) from four general circulation models (GCM’s) of the atmosphere. Ecosystems were classified using a three-dimensional climatic ordination of growing degree days (above a 5 °C threshold), Budyko’s dryness index (based on radiation balance and annual precipitation), and Conrad’s continentality index. Phytomass density was estimated using published data of Bazilevich covering all vegetation zones in Siberia. Under current climate, total phytomass of Siberia is estimated to be 74.1 ± 2.0 Pg. Note that this estimate is based on the current forested percentage in each vegetation class compiled from forest inventory data. Moderate warming associated with the GISS (Goddard Institute for Space Studies) and OSU (Oregon State Univ.) projections resulted in a 23–26% increase in phytomass (to 91.3 ± 2.1 Pg and 93.6 ± 2.4 Pg, respectively), primarily due to an increase in the productive Southern Taiga and Subtaiga classes. Greater warming associated with the GFDL (General Fluid Dynamics Laboratory) and UKMO (United Kingdom Meteorological Office) projections resulted in a small 3–7% increase in phytomass (to 76.6 ± 1.3 Pg and 79.6 ± 1.2 Pg, respectively). A major component of predicted changes using GFDL and UKMO is the introduction of a vast Temperate Forest-Steppe class covering nearly 40% of the area of Siberia, at the expense of Taiga; with current climate, this vegetation class is nearly non-existent in Siberia. In addition, Subboreal Forest-Steppe phytomass doubles with all GCM predictions. In all four climate change scenarios, the predicted phytomass stock of all colder, northern classes is reduced considerably (viz., Tundra, Forest-Tundra, Northern Taiga, and Middle Taiga). Phytomass in Subtaiga increases greatly with all scenarios, from a doubling with GFDL to quadrupling with OSU and GISS. Overall, phytomass of the Taiga biome (Northern, Middle, Southern, and Subtaiga) increased 15% in the moderate OSU and GISS scenarios and decreased by a third in the warmer UKMO and GFDL projections. In addition, a sensitivity analysis found that the percentage of a vegetation class that is forested is a major factor determining phytomass distribution. From 25 to 50% more phytomass is predicted under climate change if the forested proportion corresponding to potential rather than current vegetation is assumed

    United States Department of Agriculture

    No full text
    Overview 1 The Wood Compatibility Initiative 2 The Conceptual Model 4 Scale of Analysis 5 Research Strategy 6 Synthesis Plans for the Wood Compatibility Initiative 8 Joint Production Research Summary 10 Compatible Wood Production: Research Examples at Several Scales 10 Stand-Level Studies 13 Watershed and Landscape-Scale Studies 17 Province-Level Studies 20 Regional-Level Studies 30 Progress Toward Understanding Compatibility 36 Acknowledgments 36 English Equivalents 36 References 44 Appendix: Summary of Funded Proposals Contents This paper summarizes the progress, during its first three years (1998-2000), of the effort at the Pacific Northwest Research Station to organize a wood compatibility initiative. It is divided into four major sections. First, we discuss the problem and approaches addressed by the Wood Compatibility Initiative (WCI) including plans for future synthesis work. Second, we briefly summarize joint production research in forestry. Third, we summarize examples of research that address compatible wood production at four spatial scales. Fourth, we synthesize existing work to answer several questions about compatibility. The need for sustainable approaches to meet increasing demands on the forest has focused attention on an important question: "Can we as a society produce wood commodities and other forest values in an environmentally acceptable and sustainable manner?" Little scientific information is available, however, on the compatibilities, tradeoffs, and joint production possibilities between commodity production and forest values such as wildlife, water, aesthetics, and recreation that the public desires from our forests. Basically, this is a question about reaching and maintaining a desirable structure and function of a forest ecosystem unde..

    Do individual-tree growth models correctly represent height:diameter ratios of Norway spruce and Scots pine?

    Get PDF
    ▶ We examined four individual tree models in Europe: BWIN, Moses, Silva and Prognaus. ▶ We simulated growth of open-grown trees and on research plots for 15 or 30 years. ▶ Height:diameter ratios were correctly predicted by all four models. ▶ Height:diameter ratios were within the bounds of open grown trees and dense stands. ▶ They decreased with age and density; dominant trees had lower ratios than mean trees
    corecore