134 research outputs found

    Sex differences in plasma clozapine and norclozapine concentrations in clinical practice and in relation to body mass index and plasma glucose concentrations: a retrospective survey

    Get PDF
    Background Clozapine is widely prescribed and, although effective, can cause weight gain and dysglycemia. The dysmetabolic effects of clozapine are thought to be more prevalent in women with this gender on average attaining 17 % higher plasma clozapine concentrations than men. Methods We investigated the relationship between dose, body mass index (BMI), plasma glucose concentration, and plasma clozapine and N-desmethylclozapine (norclozapine) concentrations in 100 individuals with a severe enduring mental illness. Results Mean (10th/90th percentile) plasma clozapine concentrations were higher for women [0.49 (0.27–0.79) mg/L] compared with men [0.44 (0.26–0.70) mg/L] (F = 2.2; p = 0.035). There was no significant gender difference in the prescribed clozapine dose. BMI was significantly higher in women [mean (95 % CI) = 34.5 (26.0–45.3)] for females compared with 32.5 (25.2–41.0) for males. Overall, BMI increased by 0.7 kg/m 2 over a mean follow-up period of 210 days. A lower proportion, 41 % of women had a fasting blood glucose ≤6.0 mmol/L (<6.0 mmol/L is defined by the International Diabetes Federation as normal glucose handling), compared with 88 % of men (χ2  = 18.6, p < 0.0001). Conclusions We have shown that mean BMI and blood glucose concentrations are higher in women prescribed clozapine than in men. Women also tended to attain higher plasma clozapine concentrations than men. The higher BMI and blood glucose in women may relate to higher tissue exposure to clozapine, as a consequence of sex differences in drug metabolism

    Imaging Fabry-Perot Spectroscopy of NGC 5775: Kinematics of the Diffuse Ionized Gas Halo

    Full text link
    We present imaging Fabry-Perot observations of Halpha emission in the nearly edge-on spiral galaxy NGC 5775. We have derived a rotation curve and a radial density profile along the major axis by examining position-velocity (PV) diagrams from the Fabry-Perot data cube as well as a CO 2-1 data cube from the literature. PV diagrams constructed parallel to the major axis are used to examine changes in azimuthal velocity as a function of height above the midplane. The results of this analysis reveal the presence of a vertical gradient in azimuthal velocity. The magnitude of this gradient is approximately 1 km/s/arcsec, or about 8 km/s/kpc, though a higher value of the gradient may be appropriate in localized regions of the halo. The evidence for an azimuthal velocity gradient is much stronger for the approaching half of the galaxy, although earlier slit spectra are consistent with a gradient on both sides. There is evidence for an outward radial redistribution of gas in the halo. The form of the rotation curve may also change with height, but this is not certain. We compare these results with those of an entirely ballistic model of a disk-halo flow. The model predicts a vertical gradient in azimuthal velocity which is shallower than the observed gradient, indicating that an additional mechanism is required to further slow the rotation speeds in the halo.Comment: 18 pages, 18 figures. Uses emulateapj.cls. Accepted for publication in Ap

    Integral Field Unit Observations of NGC 891: Kinematics of the Diffuse Ionized Gas Halo

    Get PDF
    We present high and moderate spectral resolution spectroscopy of diffuse ionized gas (DIG) emission in the halo of NGC 891. The data were obtained with the SparsePak integral field unit at the WIYN Observatory. The wavelength coverage includes the [NII]6548,6583, Halpha, and [SII]6716,6731 emission lines. Position-velocity (PV) diagrams, constructed using spectra extracted from four SparsePak pointings in the halo, are used to examine the kinematics of the DIG. Using two independent methods, a vertical gradient in azimuthal velocity is found to be present in the northeast quadrant of the halo, with magnitude approximately 15-18 km/s/kpc, in agreement with results from HI observations. The kinematics of the DIG suggest that this gradient begins at approximately 1 kpc above the midplane. In another part of the halo, the southeast quadrant, the kinematics are markedly different, and suggest rotation at about 175 km/s, much slower than the disk but with no vertical gradient. We utilize an entirely ballistic model of disk-halo flow in an attempt to reproduce the kinematics observed in the northeast quadrant. Analysis shows that the velocity gradient predicted by the ballistic model is far too shallow. Based on intensity cuts made parallel to the major axis in the ballistic model and an Halpha image of NGC 891 from the literature, we conclude that the DIG halo is much more centrally concentrated than the model, suggesting that hydrodynamics dominate over ballistic motion in shaping the density structure of the halo. Velocity dispersion measurements along the minor axis of NGC 891 seem to indicate a lack of radial motions in the halo, but the uncertainties do not allow us to set firm limits.Comment: 31 pages, 10 figures. Accepted for publication in the Astrophysical Journa

    Characterizing Transition Temperature Gas in the Galactic Corona

    Get PDF
    We present a study of the properties of the transition temperature (T~10^5 K) gas in the Milky Way corona, based on measurements of OVI, NV, CIV, SiIV and FeIII absorption lines seen in the far ultraviolet spectra of 58 sightlines to extragalactic targets, obtained with Far-Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph. In many sightlines the Galactic absorption profiles show multiple components, which are analyzed separately. We find that the highly-ionized atoms are distributed irregularly in a layer with a scaleheight of about 3 kpc, which rotates along with the gas in the disk, without an obvious gradient in the rotation velocity away from the Galactic plane. Within this layer the gas has randomly oriented velocities with a dispersion of 40-60 km/s. On average the integrated column densities are log N(OVI)=14.3, log N(NV)=13.5, log N(CIV)=14.2, log N(SiIV)=13.6 and log N(FeIII)=14.2, with a dispersion of just 0.2 dex in each case. In sightlines around the Galactic Center and Galactic North Pole all column densities are enhanced by a factor ~2, while at intermediate latitudes in the southern sky there is a deficit in N(OVI) of about a factor 2, but no deficit for the other ions. We compare the column densities and ionic ratios to a series of theoretical predictions: collisional ionization equilibrium, shock ionization, conductive interfaces, turbulent mixing, thick disk supernovae, static non-equilibrium ionization (NIE) radiative cooling and an NIE radiative cooling model in which the gas flows through the cooling zone. None of these models can fully reproduce the data, but it is clear that non-equilibrium ionization radiative cooling is important in generating the transition temperature gas.Comment: 99 pages, 11 figures, with appendix on Cooling Flow model; only a sample of 5 subfigures of figure 2 included - full set of 69 available through Ap

    Integral Field Unit Observations of NGC 4302: Kinematics of the Diffuse Ionized Gas Halo

    Full text link
    We present moderate resolution spectroscopy of extraplanar diffuse ionized gas (EDIG) emission in the edge-on spiral galaxy NGC 4302. The spectra were obtained with the SparsePak integral field unit (IFU) at the WIYN Observatory. The spectra are used to construct position-velocity (PV) diagrams at several ranges of heights above the midplane. Azimuthal velocities are directly extracted from the PV diagrams using the envelope tracing method, and indicate an extremely steep dropoff in rotational velocity with increasing height, with magnitude ~30 km/s/kpc. We find evidence for a radial variation in the velocity gradient on the receding side. We have also performed artificial observations of galaxy models in an attempt to match the PV diagrams. The results of a statistical analysis also favor a gradient of ~30 km/s/kpc. We compare these results with an entirely ballistic model of disk-halo flow, and find a strong dichotomy between the observed kinematics and those predicted by the model. The disagreement is worse than we have found for other galaxies in previous studies. The conclusions of this paper are compared to results from two other galaxies, NGC 5775 and NGC 891. We find that the vertical gradient in rotation speed, per unit EDIG scale height, for all three galaxies is consistent with a constant magnitude (within the errors) of approximately 15-25 km/s/scaleheight, independent of radius. This relationship is also true within the galaxy NGC 4302. We also discuss how the gradient depends on the distribution and morphology of the EDIG and the star formation rates of the galaxies, and consequences for the origin of the gas.Comment: 37 pages, 10 figures; accepted for publication in the Astrophysical Journa

    VAST: An ASKAP Survey for Variables and Slow Transients

    Get PDF
    The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae and orphan afterglows of gamma ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of five seconds and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.Comment: 29 pages, 8 figures. Submitted for publication in Pub. Astron. Soc. Australi

    The L&E of Intellectual Property – Do we get maximum innovation with the current regime?

    Full text link
    Innovation is crucial to economic growth – the essential path for lifting much of the world population out of dire poverty and for maintaining the living standard of those who already have. To stimulate innovation, the legal system has to support the means through which innovators seek to get rewarded for their efforts. Amongst these means, some, such as the first mover advantage or 'lead time,' are not directly legal; but secrets and intellectual property rights are legal institutions supported for the specific purpose of stimulating innovation. Whilst the protection of secrets has not changed very much over recent years, intellectual property (or IP) has. IP borrows some features from ordinary property rights, but is also distinct, in that, unlike physical goods, information, the object of IP, is not inherently scarce; indeed as information and communication technologies expand, the creation and distribution of information is becoming ever cheaper and in many circumstances abundant, so that selection is of the essence ('on the internet, point of view is everything'). Where rights on information extend too far, their monopolising effect may hamper innovation. The paper investigates the underlying structure of IP rights and surveys what we know empirically about the incentive effects of IP as about industries that flourish without formal IP
    corecore