59 research outputs found

    Chromatography of oxysterols

    Get PDF
    Oxysterols play important roles in development and diseases, but can be highly challenging to analyze. To ensure satisfactory measurements, oxysterols must typically be separated with chromatography prior to detection. Here, we will devote attention to the chromatography of oxysterols, focusing on gas chromatography and liquid chromatography. We will present the role of stationary phases, mobile phases, and dimensions and geometries of particles/columns. We discuss how these parameters may affect the chromatography, regarding factors such as speed and resolution. Finally, we present some less explored avenues for separation of oxysterols

    New methods for analysis of oxysterols and related compounds by LC–MS

    Get PDF
    Oxysterols are oxygenated forms of cholesterol or its precursors. They are formed enzymatically and via reactive oxygen species. Oxysterols are intermediates in bile acid and steroid hormone biosynthetic pathways and are also bioactive molecules in their own right, being ligands to nuclear receptors and also regulators of the processing of steroid regulatory element-binding proteins (SREBPs) to their active forms as transcription factors regulating cholesterol and fatty acid biosynthesis. Oxysterols are implicated in the pathogenesis of multiple disease states ranging from atherosclerosis and cancer to multiple sclerosis and other neurodegenerative diseases including Alzheimer’s and Parkinson’s disease. Analysis of oxysterols is challenging on account of their low abundance in biological systems in comparison to cholesterol, and due to the propensity of cholesterol to undergo oxidation in air to generate oxysterols with the same structures as those present endogenously. In this article we review the mass spectrometry-based methods for oxysterol analysis paying particular attention to analysis by liquid chromatography – mass spectrometry (LC-MS)

    Corporate Culture and Empathy and Excitement Labor of Service Employees inService Company, Mainly at Tokyo Disneyland

    Get PDF
    東京ディズニーランド(ディズニーシーを含むパーク)の大成功(集客と驚異的リピート率)の要因は、①「夢と魔法の王国」にふさわしいアトラクション1、②接客従業員(主に、非正社員、キャラクターを含む)のホスピタリティ・サービスが、顧客に「素晴らしい思い出に残る感動経験」を与えていることである。望ましいサービス労働のあり方は「顧客・従業員インターラクティブの共感に基づく従業員の感動労働」であるという仮説をたて、その解明を研究目的とした。①先行研究の考察、②運営会社へのインタビュー、③現場でのキャストのサービス労働の実査と簡単な質問、④顧客へのヒストリカル・インタビュー・アンケート実施という研究方法によって、接客従業員の「共感・感動労働」を実証中である。共感・感動労働の視点で、東京ディズニーランドと日本マクドナルド、スターバックスコーヒーとを比較した

    Cholesterolomics: An update

    Get PDF
    Cholesterolomics can be regarded as the identification and quantification of cholesterol, its precursors post squalene, and metabolites of cholesterol and of its precursors, in a biological sample. These molecules include 1,25-dihydroxyvitamin D3, steroid hormones and bile acids and intermediates in their respective biosynthetic pathways. In this short article we will concentrate our attention on intermediates in bile acid biosynthesis pathways, in particular oxysterols and cholestenoic acids. These molecular classes are implicated in the aetiology of a diverse array of diseases including autoimmune disease, Parkinson's disease, motor neuron disease, breast cancer, the lysosomal storage disease Niemann-Pick type C and the autosomal recessive disorder Smith-Lemli-Opitz syndrome. Mass spectrometry (MS) is the dominant technology for sterol analysis including both gas-chromatography (GC)-MS and liquid chromatography (LC)-MS and more recently matrix-assisted laser desorption/ionisation (MALDI)-MS for tissue imaging studies. Here we will discuss exciting biological findings and recent analytical improvements

    Tumor-derived exosomes: potential biomarker or therapeutic target in breast cancer?

    Get PDF
    Exosomes are released by normal and tumour cells, including those involved in breast cancer, and provide a means of intercellular communications. Exosomes with diameters ranging between 30-150 nm are involved in transferring biological information, via various lipids, proteins, different forms of RNAs, and DNA from one cell to another, and this can result in reprogramming of recipient cell functions. These vesicles are present in all body fluids, e.g., blood plasma/serum, semen, saliva, cerebrospinal fluid, breast milk, and urine. It has been recently reported that these particles are involved in the development and progression of different tumor types, including breast cancer. Furthermore, it has been suggested that exosomes have the potential to be used as drug transporters, or as biomarkers. This review highlights the potential roles of exosomes in normal and breast cancer cells and their potential applications as biomarkers with special focus on their potential applications in treatment of breast cancer

    Impaired LXRa phosphorylation attenuates progression of fatty liver disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a very common indication for liver transplantation. How fat-rich diets promote progression from fatty liver to more damaging inflammatory and fibrotic stages is poorly understood. Here, we show that disrupting phosphorylation at Ser196 (S196A) in the liver X receptor alpha (LXRα, NR1H3) retards NAFLD progression in mice on a high-fat-high-cholesterol diet. Mechanistically, this is explained by key histone acetylation (H3K27) and transcriptional changes in pro-fibrotic and pro-inflammatory genes. Furthermore, S196A-LXRα expression reveals the regulation of novel diet-specific LXRα-responsive genes, including the induction of Ces1f, implicated in the breakdown of hepatic lipids. This involves induced H3K27 acetylation and altered LXR and TBLR1 cofactor occupancy at the Ces1f gene in S196A fatty livers. Overall, impaired Ser196-LXRα phosphorylation acts as a novel nutritional molecular sensor that profoundly alters the hepatic H3K27 acetylome and transcriptome during NAFLD progression placing LXRα phosphorylation as an alternative anti-inflammatory or anti-fibrotic therapeutic target

    Changes In LXRα Phosphorylation Promote A Novel Diet-Induced Transcriptome That Alters The Transition From Fatty Liver To Steatohepatitis

    Get PDF
    Understanding the transition from fatty liver or steatosis to more advanced inflammatory and fibrotic stages of non-alcoholic fatty liver disease (steatohepatitis), is key to define strategies that alter or even reverse the progression of this pathology. The Liver X Receptor alpha (LXRα) controls hepatic lipid homeostasis and inflammation. Here we show that mice carrying a mutation that abolishes phosphorylation at Ser196 (S196A) in LXRα exhibit reduced hepatic inflammation and fibrosis when challenged with a high fat-high cholesterol diet, despite displaying enhanced hepatic lipid accumulation. This protective effect is associated with reduced cholesterol accumulation, a key promoter of lipid-mediated hepatic damage. Reduced steatohepatitis in S196A mice involves the reprogramming of the liver transcriptome by promoting diet-induced changes in the expression of genes involved in endoplasmic reticulum stress, extracellular matrix remodelling, inflammation and lipid metabolism. Unexpectedly, changes in LXRα phosphorylation uncover novel diet-specific target genes, whose regulation does not simply mirror ligand-induced LXR activation. These unique LXRα phosphorylation-sensitive, diet-responsive target genes are revealed by promoting LXR occupancy and cofactor recruitment in the context of a cholesterol-rich diet. Therefore, LXRα phosphorylation at Ser196 critically acts as a novel nutritional sensor that promotes a unique diet-induced transcriptome thereby modulating metabolic, inflammatory and fibrotic responses important in the transition to steatohepatitis

    An update on oxysterol biochemistry: New discoveries in lipidomics

    Get PDF
    Oxysterols are oxidised derivatives of cholesterol or its precursors post lanosterol. They are intermediates in the biosynthesis of bile acids, steroid hormones and 1,25-dihydroxyvitamin D3. Although often considered as metabolic intermediates there is a growing body of evidence that many oxysterols are bioactive and their absence or excess may be part of the cause of a disease phenotype. Using global lipidomics approaches oxysterols are underrepresented encouraging the development of targeted approaches. In this article, we discuss recent discoveries important in oxysterol biochemistry and some of the targeted lipidomic approaches used to make these discoveries

    Sterolomics in biology, biochemistry, medicine

    Get PDF
    In mammalian systems “sterolomics” can be regarded as the quantitative or semi-quantitative profiling of all metabolites derived from cholesterol and its cyclic precursors. The system can be further complicated by metabolites derived from ingested phytosterols or pharmaceuticals, but this is beyond the scope of this article. “Sterolomics” can be performed on either an unbiased global format, or more usually, exploiting a targeted format. Here we discuss the different mass spectrometry-based analytical techniques used in “sterolomics” giving specific examples in the context of neurodegenerative disease and for the diagnosis of inborn errors of metabolism. We pay particular attention to the profiling of cholesterol metabolites in the bile acid biosynthesis pathways, although the analytical techniques discussed are also appropriate for analysis of hormonal steroids
    corecore