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Abstract 

Oxysterols play important roles in development and diseases, but can be highly challenging to 

analyze. To ensure satisfactory measurements, oxysterols must typically be separated with 

chromatography prior to detection. Here, we will devote attention to the chromatography of 

oxysterols, focusing on gas chromatography and liquid chromatography. We will present the 

role of stationary phases, mobile phases, and dimensions and geometries of particles/columns. 

We discuss how these parameters may affect the chromatography, regarding factors such as 

speed and resolution. Finally, we present some less explored avenues for separation of 

oxysterols.  
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Highlights 14 

� Gas chromatography for oxysterols is well established 15 

� More diversity in liquid chromatography approaches 16 

� Approaches to enhancing speed and selectivity with LC are presented 17 

� Few differences in chromatography between native and derivatized oxysterols 18 

� Alternative approaches to separation of oxysterols exist, but are little explored 19 

 20 
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analyze. To ensure satisfactory measurements, oxysterols must typically be separated with 27 

chromatography prior to detection. Here, we will devote attention to the chromatography of 28 

oxysterols, focusing on gas chromatography and liquid chromatography. We will present the 29 

role of stationary phases, mobile phases, and dimensions and geometries of particles/columns. 30 

We discuss how these parameters may affect the chromatography, regarding factors such as 31 

speed and resolution. Finally, we present some less explored avenues for separation of 32 
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 58 

1. Introduction 59 

Oxysterols are a group of lipids that receive considerable attention due to the unraveling of 60 

their roles in numerous diseases and development [1-5], and are established biomarkers for 61 

e.g. Niemann–Pick disease (NPD) [6]. Quality measuring tools must be employed to 62 

understand the roles oxysterols play in development, diseases and conditions. However, the 63 

measurement of oxysterols can be highly challenging. Some reasons are that oxysterols may 64 

be present at low concentrations, in limited samples. In general, such issues can often be 65 

solved by using highly sensitive mass spectrometry (MS) techniques. However, many 66 

oxysterols are not “ideal” for MS analysis, as they can be difficult to ionize; ionization is key 67 

requisite when using electrospray ionization (ESI), a most common interface of MS. But 68 

perhaps equally important, oxysterols are often highly similar compounds, e.g. present as 69 

isomers with similar MS fragmentation profiles, making selective determinations a significant 70 

challenge. Thus, oxysterols require particular care regarding pre-MS steps. A key step is to 71 

ensure high quality chromatographic separations, for e.g. resolving isomers and achieving 72 

precise measurements.  73 

In this review, we will focus on the chromatography of oxysterols. In particular, we will 74 

discuss separations of oxysterols using gas chromatography (GC) and liquid chromatography 75 

(LC), giving attention to the speed, resolution and sensitivity of oxysterol separations using 76 

these techniques. Although we acknowledge the great improvements made in separation 77 

instrumentation over the years (rapid injection systems, low void volume connections, MS 78 

resolution etc.), we focus here on fundamental  separation conditions, e.g. column materials, 79 

stationary phases, mobile phases (MP) and particle geometries. The chromatography of native 80 

and derivatized oxysterols (“charge-tagged” for improved MS sensitivity) will be discussed. 81 

Finally, we will take a look at some less employed approaches for separations, which may 82 

have future roles in oxysterol separations. 83 

 84 

2. Gas Chromatography and oxysterols: “Never change a winning team”? 85 

GC is a technique in which compounds are separated in meter-scale columns with inner 86 

diameters well below 1 mm. Compounds are separated by having unequal retention factors 87 

(time spent on the column walls/ time spent in a gaseous MP). The stationary phase is 88 

typically a polymer coating around 0.25 µm in thickness. GC can provide excellent resolution 89 

and is simply coupled with MS, typically via election ionization (EI) interfaces. Also, GC-EI-90 

MS does not suffer from suppression effects to the same degree as ESI (the common MS 91 
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interface with LC) [8, 9]. Reduced suppression from other compounds lessens the need for 92 

analyte-specific internal standards.  GC has been a workhorse for analysis of sterols for well 93 

over 50 years [10-12]. For the last couple of decades, a method described by Ulf Diczfalusy 94 

and co-workers for oxysterol analysis has been highly influential [13]. For measurements of 95 

the analytes in human plasma, the authors separated 7α- and 7β-hydroxycholesterol, 7-96 

oxocholesterol, cholesterol-5α,6α-epoxide, cholesterol-5β,6β-epoxide, cholestane-3β,5α,6β-97 

triol, 24-hydroxycholesterol, 25-hydroxycholesterol, and 27-hydroxycholesterol and used MS 98 

for detection (Figure 1). The analytes were derivatized with trimethylsilyl (TMS) to enhance 99 

volatility as required by GC.  The authors employed a 30 meter long column, featuring a HP-100 

5MSM ((5%-phenyl)-methylpolysiloxane) film, which is described as a non polar ”general 101 

purpose” stationary phase, where separations are mainly based on differences in boiling 102 

points. A temperature gradient was employed and the MP (helium) was held at 0.8 mL/min 103 

(35 cm/second), which is close to the optimal column efficiency for the MP and column inner 104 

diameter (ID) (0.25 mm). Using these conditions, the authors obtained peaks with widths of 105 

about 15 seconds, with all the analytes being detected within 19 minutes.  106 

This method has been cited several hundred times, and more importanty, has been 107 

reproduced/re-used in a substantial number of studies. Quite remarkably, few major 108 

significant modifications to this GC method have been reported. Some researchers have 109 

reduced the analysis time; for determining serum cholestane-3β,5α,6β-triol as a biomarker for 110 

Niemann-Pick type C disease (NPC) diagnosis, Kannenberg et al. performed analyses below 111 

10 minutes per sample. The authors employed a trifluoropropylmethyl polysiloxane phase, a 112 

mid-polar stationary phase, which is promoted as being ideal for separating positional isomers 113 

[14]. A most notable reduction of analysis time was shown by Maria T. Rodriguez-Estrada 114 

and co-workers, who performed analysis of cholesterol oxidation products using “fast gas 115 

chromatography” [15]; a shorter (10 m) column with a narrower ID (0.1 mm) and thinner 116 

stationary phase film (0.1 µm thickness) allowed for separation (resolution (Rs)>1.2) of 7α‐117 

hydroxycholesterol, 19‐hydroxycholesterol, 7β‐hydroxycholesterol, β‐epoxycholesterol, α‐118 

epoxycholesterol, cholestanetriol, 25‐hydroxycholesterol, 7‐KC in 3.5 minutes (Figure 2). It 119 

should be noted that a narrow ID and thin film allow for improved efficiency, which can be 120 

essential for obtaining resolution when the column length is decreased (reduces analysis time, 121 

but affects the separation).  The fast analysis time of this method is roughly 5-10 times faster 122 

than that described in most related papers. The flow rate was 0.41 mL/minute, which 123 

corresponds to a linear velocity of 43 cm/second (narrow columns can be operated at higher 124 

linear velocities without dramatic decreases in efficiency). However, substantial efforts 125 
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towards gas chromatographic improvement have in general not been prioritized in oxysterol 126 

analysis. This is perhaps quite reasonable, as GC has to a large degree reached a level of 127 

maturity allowing for stable analysis, especially when analysis time is not a major concern. 128 

Also, GC-MS instruments are typically less expensive than LC-MS instruments. 129 

 130 

3. Liquid chromatography and oxysterols: a broad range of approaches 131 

Briefly, LC is a technique in which compounds are separated in a centimeter-scale column 132 

with an inner diameter typically between 1-4 mm. The MPs are liquids, and the stationary 133 

phases are often attached to particles with sizes typically between 1.7 and 5 µm diameters. 134 

Although GC can provide greater plate numbers per column, LC provides greater plate 135 

numbers per column length. Moreover, derivatization is not an absolute requirement for all 136 

applications. Regarding oxysterols, LC-ESI-MS is generally more sensitive than GC-MS 137 

variants [16]. Oxysterol separations by LC have been undertaken using either normal-phase 138 

(NP) LC or reversed-phase (RP) LC.  139 

 140 

3.1 NPLC: a lost cause? 141 

In NPLC, molecules are adsorbed to the surfaces of silica particles (unmodified or featuring 142 

polar chemically bonded phases) and are eluted with non-polar solvents such as hexane or 143 

heptane. Analytes engage with the stationary phase via hydrogen bonding and dipole 144 

interactions. There are some examples of determination of oxysterols using NPLC coupled to 145 

UV detection with good chromatographic resolution between the isomers [17, 18]. However, 146 

NP MP solvents show low conductivity, surface tension, and lack ability to donate or accept a 147 

proton to give analytes charge (and hence sensitivity) for ESI-MS detection (a “gold-148 

standard” in the analysis of fluids).  On the other hand, this can be partially overcome by 149 

addition of polar solvents such as 2-propanol [13] or methanol [14]. But in addition, NP is 150 

generally perceived as having lower reproducibility and predictability than RPLC. Normal 151 

phase and reverse phase separations have been compared regarding oxysterols. Careri et al. 152 

compared chromatographic separations of cholesterol and five oxysterols using NPLC 153 

(Nucleosil 5-CN column) and RPLC (C18, Ultracarb ODS (20) column).  RPLC (associated 154 

with more robustness) provided superior sensitivity for all the compounds measured [19]. 155 

RPLC is the key mode when analyzing oxysterols in complex biological samples with MS 156 

detection. However, we will discuss promising separation techniques related to NPLC in the 157 

final section. 158 

 159 
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3.2 RPLC: a workhorse with possibilities for different selectivity 160 

RP stationary phases are hydrophobic and are typically alkyl chains. The oxysterols, both 161 

native and derivatized are most commonly separated using octadecyl alkyl chain (C18)-162 

bonded silica stationary phases, followed by C8-bonded silica columns (Tables 1 and 2). The 163 

analytes are expected to elute according to hydrophobicity (although RPLC is far more 164 

complex than commonly perceived [20]).  With RPLC, the more polar side chain oxygenated 165 

oxysterols elute before ring-oxidized sterols followed by more non-polar sterols [19, 21]). 166 

C18 columns generally provide the same retention order for oxysterols (when using similar 167 

MPs) regardless of the derivatization reagent (derivatization in LC is discussed in some more 168 

detail below). This implies that selectivity differences are typically not attributed to the 169 

derivatization reagent. However, RPLC can have somewhat surprisingly degrees of selectivity 170 

options.  Shan et al. compared oxysterol separations regarding two solvent systems, 171 

acetonitrile:water and methanol:water, on C8 and C18 columns [22]. They showed that even 172 

with same MP the chromatographic mobility and selectivity between C8 and C18 columns are 173 

considerably different. The C8 column was able to resolve several oxysterol pairs, including 174 

7α- and 7β-hydroxycholesterol, which were inseparable on the C18 column using a similar 175 

MP. Compared to using methanol:water, using acetonitrile:water with a C18 column provided 176 

improved resolution of oxysterol pairs 27-hydroxycholesterol/3β,5α,6β-triol, 24R-177 

hydroxycholesterol/20α-hydroxycholesterol, 7α-hydroxycholesterol/7β-hydroxycholesterol, 178 

and 7-ketocholesterol/3β-OH-6-one. Roberg-Larsen et al. observed that employing an 179 

acetonitrile-based MP and C18 allowed separation of 20-hydroxycholesterol and 27-180 

hydroxycholesterol, while separation of 27-hydroxycholesterol and 24S-hydroxycholesterol 181 

was not possible with the same conditions [23]. The opposite was observed when using 182 

methanol-based MP (in the final section we will discuss an approach that may allow these two 183 

systems to be combined). Roberg-Larsen et al. has observed highly similar RPLC oxysterol 184 

separations in microbore LC, capillary LC and nano LC [23-25] (selectivity is rarely affected 185 

by column diameter). 186 

 187 

24S-hydroxycholesterol and 25-hydroxycholesterol can also be challenging to separate. 188 

Debarber et al. separated 24R- and 24S-hydroxycholesterol by modifying a method by 189 

Burkard and coworkers [26] using a methanol:acetonitrile:water MP (45:40:35) and a column 190 

temperature of 55 °C [27]. Changing to methanol/acetonitrile/water (14:0.6:1) and a column 191 

temperature of 10 °C same authors demonstrated separation of 24-hydroxycholesterol from 192 

25-hydroxycholesterol within short (6.5 min) time. The later method reversed the retention 193 
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order of two oxysterols to 24-hydroxycholesterol followed by 25-hydroxycholesterol. 194 

However, the later method did not baseline separate the two oxysterols.  195 

 196 

Great efforts have been made to ensure that the analytes do not interact with the particles in 197 

which the stationary phase is attached, as e.g. silica particles cause secondary interactions and  198 

may perturb the separation (e.g. cause band broadening and tailing). Avoiding interactions 199 

with the particles can be done by efficient rest-silanization and adding functional groups at the 200 

trunk of the main stationary phase for steric hindrance. In addition, the carbon loading of the 201 

particles is crucial for oxysterol separations. For instance, otherwise high quality columns 202 

which featured lower carbon loads were unable to provide selective separation of side-chained 203 

oxysterols [25]. 204 

 205 

To improve chromatographic efficiency further, the size of the particles may be reduced; 206 

today sub-µm particles are common, while 3-5 µm particles were standard about a decade 207 

ago.  The Hypersil GOLDTM column is a familiar column in oxysterol RPLC, both in UHPLC 208 

(sub 2 µm particles) and regular HPLC (3 µm particles), typically with a 2.1 mm ID. The 209 

Hypersil GOLDTM columns are endcapped silica-based columns, with a high hydrophobicity 210 

and medium shape selectivity and polar surface activity. (For column classification see [28]  211 

and [29]) This column material has been used for chromatographing both Girard P- and 212 

Picolinyl ester derivatized (PED) oxysterols [30-39]. This column seems to not be compatible 213 

with Girard T derivates (Rs >1.1, data not published). However, sub-µm particles cause 214 

higher back-pressures. Therefore, a highly attractive alternative has been the use of core shell 215 

particles. Core shell particles have a solid core and porous shell, that gives high efficiency and 216 

fast separations with low back pressure compared to traditionally porous particles [40]. Core 217 

shell particles provide similar efficiencies to sub-µm particles. A well-known example of core 218 

shell particles for oxysterol analysis is that by McDonald et al. who chromatographed 62 219 

different sterols, oxysterols and secosteroids from human plasma using two different LC and 220 

one GC method. Both the LC methods used core shell particles, with the  side-chain 221 

oxysterols  eluting  in 7.5min (total run time 12min) [41].    222 

A notable exception from using octyl chain stationary phases is by Silke Matysik and co-223 

workers who employed a biphenyl phase [42]. Biphenyl stationary phases typically provide 224 

increased retention and can have a different selectivity compared to traditional C18/RP 225 

phases, as it can provide both π –π interactions and higher hydrogen bonding capacities [43]. 226 

In addition to featuring a different phase, the column employed was packed with core shell 227 
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particles. The work of Silke Matysik and co-workers demonstrate a quick separation of N,N-228 

dimethylglycine (DMG) derivatized oxysterols (8 oxysterols in 8 minutes, see Figure 3) 229 

 230 

3.3 Effect of derivatization on oxysterol chromatography 231 

Derivatization of oxysterols is used to enhance sensitivity in MS detection by incorporation of 232 

a charge group into the oxysterol. Derivatization of oxysterols can be used with both ESI-MS 233 

and atmospheric pressure chemical ionization (APCI)-MS. In addition to enabling enhanced 234 

sensitivity, derivatization can also make the sterols more soluble in MPs commonly used in 235 

RPLC. Derivatization  can also prevent adsorption of the hydrophobic sterols on narrow ID 236 

fused silica tubing in use in sensitive nano LC-based systems [7].  Other benefits of 237 

derivatization are more easily interpretable MS2 spectra, as fragmentation of the derivatized 238 

group usually gives more specific fragmentation [7]. 239 

 240 

A variety of different derivatization reactions for sterols exist, and most common used ones 241 

for oxysterols are Girard P and T reagent, picolinyl acid and DMG (for end product structures 242 

see Figure 4 and a recent review by Yuqin Wang and William J. Griffiths’ group summarizes 243 

the details for all the most common derivatization reactions [4]. While DMG is mostly used in 244 

the context of NPC disease [44-46], Girard P and T is used in the context of neurologic [31] 245 

or metabolomic [33] diseases and cancer [23, 24]. All these derivatization reactions are 246 

targeting the hydroxyl group. An alternative is to use click-chemistry, to target the double 247 

bond between the C5 and the C6 in the sterol structure, e.g. by thiol-ene click-chemistry 248 

tagging using a photoinitiator [47]. The click-chemistry generates heteroatom links (C-X-C) 249 

and reaction rates can be quick (< 1 minutes) when using a microflow reaction cell. 250 

 251 

Regarding chromatographic performance, there are small differences in the behavior of the 252 

derivatized or native oxysterols. Cha et al. [48] has analyzed both native oxysterols from 253 

serum samples as silver adducts and  picolinyl ester derivatized (PED) oxysterols from CFS. 254 

Although the chromatograms look very different regarding analysis time, the analysis is 255 

performed on two different reversed phase columns; An ACE C18 (3 µm, 150 mm x 2.1 mm 256 

ID) and a Kinetex C18 (2.6 µm, 100 mm x 2.1 mm ID, core shell). Although these columns 257 

has approximately the same hydrophobicity, they have different shape selectivities and polar 258 

surface activities [28] and most importantly, different solid supports (fully porous vs. core-259 

shell). It would be interesting to compare the separation of the PED with McDonald et al. 260 

[41], and the native oxysterol separation with Roberg-Larsen et al [24], which both uses the 261 
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same columns on native and Girard T derivatized oxysterol, respectively. McDonald’s 262 

oxysterol-ammonium adducts shows similar chromatography and elutes in the same retention 263 

window as Cha’s PED, while Roberg-Larsen’s Girard T derivates elutes in the same retention 264 

window as Cha’s native sterol.   265 

 266 

3.4 Dimensions and sensitivity 267 

The most popular column dimension used in oxysterol analysis is the 2.1 mm ID format. 268 

Detection limits for native oxysterols and all the types of derivates are in low ng/mL, suitable 269 

for analyzing oxysterols in plasma. However, most of the applications use more than 50 µL 270 

plasma or serum in their sample preparation. The relatively high sample volume for the other 271 

methods can be challenging if the sample sizes are small, e.g. plasma from mouse and rats. 272 

Exception is the method from Honda et al. [36]  and Xu et al. [38], which both used only 5 µL 273 

and picolinyl ester derivatization.  Sensitivity in the same range has been achieved with 274 

Girard T derivatization (in cell sample) using narrow bore columns [23, 24]. In general, the 275 

sensitivity will depend on both the efficiency of the sample preparation and column 276 

dimensions. The 2.1 mm ID columns with small particles (e.g. > 2 µm), provide high 277 

efficiency separations, but more narrow columns (µm-scale IDs, e.g. nano LC and capillary 278 

LC) can be employed when the goal is to enhance sensitivity [23, 24, 49]. 279 

 280 

 281 

4. Unknown Pleasures? Alternative separation approaches for oxysterols 282 

In addition to conventional LC and GC, there are a number of other separation approaches 283 

that are less explored regarding oxysterols.  284 

2D GC [50] means to couple two different GC columns in a single system, to enhance 285 

chromatographic resolution. The two columns must have different selectivity, and are 286 

connected via a modulator.  Fractions elute from the first (usually long) column, and are 287 

subsequently chromatographed on a second (usually short) column. A large number of 288 

chromatograms are generated during an analysis, and dedicated software assembles these into 289 

a 2D plot (resemblance of a 2D gel). The combined resolution is in theory the product of the 290 

peak capacity of the two columns (in practice, this number is lower). This approach is used in 291 

e.g. food and gasoline analysis, but has also been used for mapping sterols [51] (Figure 5). 292 

However, the approach is not commonplace, but is commercially available from a number of 293 

manufacturers. 294 

 295 
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2D LC is a similar variant to 2D GC, where two separation columns are coupled, for example 296 

hydrophilic interaction chromatography (HILIC) and reverse phase (RP) LC. 2D LC has been 297 

used for lipid analysis ([52]), but not for sterols (to the authors´ knowledge). It is worth 298 

mentioning here that HILIC highly related to NPLC, has an acceptable stability and is highly 299 

MS compatible [53]. Hence, it could be interesting to see if this phase would have promise for 300 

oxysterol separations. Although 2D LC can provide very high resolutions, it is arguably less 301 

straightforward to operate than 2D GC, as different LC columns are often not compatible with 302 

each other’s preferred MP solvents. However, it could be interesting so see if 2D LC could 303 

fully resolve side chain-hydroxylated oxysterol isomers, by combining methanol:water and 304 

acetonitrile:water LC separations in a joint system. 305 

Capillary electrophoresis (CE) and related techniques are characterized by an electric field 306 

applied across an open tube/column in which the separation takes place. Compounds are 307 

separated by charge and hydrodynamic radius, often with unprecedented resolutions. CE has 308 

been used for sterol analysis, using organic solvents (non-aqueous CE = NACE) [54]. Since 309 

the approach does not require a solvent pump, it is highly suited for miniaturization/chip 310 

separations. However, it remains to be a more technically challenging technique compared to 311 

LC and GC. 312 

Open tubular columns (not filled with a particles) are typically used for GC and CE (and 313 

related techniques), but are rarely used in LC. However open tubular LC (OTLC) can provide 314 

for excellent chromatography and sensitivity. Such columns are typically 10 µm ID, featuring 315 

a stationary phase attached to the inner walls, as in GC. OTLC has been demonstrated 316 

regarding oxysterols, and Vehus et al. [49] achieved detection limits of 25 attograms (Girard 317 

T derivatized 25-hydroxycholesterol). For comparison, previous high sensitivity methods 318 

have achieved detection limits in the femtogram range [23, 36]. OTLC is predicted to have a 319 

significant role in tomorrow´s liquid separations [55]. However, as with the other techniques 320 

presented in this section, it has larger technical challenges, where routine labs cannot be 321 

expected to have patience for. This may be resolved when commercial OTLC 322 

products/systems become available, although these will perhaps be primarily used for 323 

applications with very limited amounts of sample. In addition to the techniques described 324 

here, there are other approaches that are rather unexplored regarding oxysterol analysis. For 325 

instance, supercritical fluid chromatography (SFC) may be an interesting and useful approach, 326 

as SFC is associated with speed and ability to separate isomers. SFC has previously been 327 

demonstrated with other sterols and related compounds [56, 57].  328 

 329 
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5. Conclusions 330 

Oxysterols can be challenging to separate, and some oxysterol pairs such as 24 R/S ‐331 

hydroxycholesterol and 25‐hydroxycholesterol, 7α- and 7β-OHC need particularly careful 332 

attention to chromatographic separation. Indeed, mass spectrometry can offer an additional 333 

level of resolution by differentiating co‐eluting compounds by mass and selecting specific ion 334 

pairs, e.g. with multiple reaction monitoring methods (MRM). However, quality oxysterol 335 

analysis needs quality separations. Regarding oxysterols, LC is becoming increasingly used 336 

and developed compared to GC. Newer types of solid support (e.g. core-shell) and stationary 337 

phases (e.g. biphenyl) should be further explored for more time efficient separation. 338 

Sensitivity is good enough for native oxysterols in serum/plasma if sample sizes are ample 339 

(>100 µL), but the inner diameter of the column can be modified to obtain sensitivity gains.  340 

Since chromatography is an important aspect in the analysis of oxysterols, we encourage 341 

readers to provide details on their chromatographic methods and challenges, to set the stage 342 

for faster and more efficient analyses in the future. 343 

 344 
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Table 1 Chromatographic conditions for derivatized oxysterol separation 

REF Derivatization Column Dimensions 

L x ID (mm) 

Particle 

size 

(µm) 

Pore 

size 

(Å) 

Surface 

area  

Carbon load 

(%) 

Mobile phases and 

Temperature 

Detection 

limits 

Run  

time 

(min) 

Analytes in retention order 

[58] N-4-(N,N-

dimethylamino)phenyl 

carbamates 

Acquity UPLC CSHTM C18 100 x 2.1  1.7 130 185 15 Formic acid (FA) 

in 

H2O/MeOH/ACN, 

70 °C 

Low nM 13 22R-OHC, 27-OHC,  

25-OHC, 24S-OHC, 

 7β-OHC, 5β,6β-

epoxycholestanol, 5α,6α-

epoxycholestanol, 

desmosterol, 7-

dehydrocholesterol, 

lathosterol, cholesterol, 

cholestenol 

 

[44] N,N-dimethylglycine BetaSil C18 100x 2.1 5 100  20 Trichloroacetic 

acid (TCA)/acetic 

acid (AA)  in 

H2O/ACN 

2 ng/mL 10 3β,5α,6β triol, 7-keto-OHC 

[46] N,N-dimethylglycine Betasil C18 100x 2.1 5 100  20 TCA/AA in 

H2O/ACN 

2 ng/mL  3β,5α,6β triol, 7-keto-OHC 

[42] N,N-dimethylglycine KintexTM Biphenyl 50 x 2.1 2.6 

Core shell 

100 200 11 FA/Ammonium 

acetate in 

H2O/MeOH/ACN, 

30 °C 

1 ng/mL 8 25-OHC, 24S-OHC, 27-

OHC, 4β-OHC, 7α-OHC 

7β-OHC, 7-keto-OHC, 

3β,5α,6β triol 

[59] N,N-dimethylglycine Gemini-NXTM C18 100x2 3 110 375 14 Ammonium 

formate in 

H2O/ACN 

0.08-0.8 

ng/mL 

15 3β,5α,6β triol, 7-keto-OHC 

[35-37, 60] Picolinyl ester Hypersil GOLD C18 150 x 2.1 3 175 220 10 FA in 

H2O/MeOH/ACN, 

40°C 

2-10 fg on 

column 

40  24S-25-epoxy-OHC, 22R-

OHC, 24S-OHC, 25-OHC 

27-OHC, 7α-OHC, 4β-



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 
 

OHC,  

[61] Picolinyl ester Acquity UPLC BEH C18 100 x 2.1 1.7 130 185 17.7 FA in 

H2O/MeOH/ACN, 

35 °C 

2 ng/mL 11 4α-OHC, 4β-OHC 

 

[38] Picolinyl ester Hypersil GOLD C18 50 x 2.1 1.9 175 220 10 FA in H2O/ACN , 

25°C  

5 ng/mL 16 24S-OHC/25-OHC*, 27-

OHC/7α-OHC/7βOHC*, 

4α-OHC, 4β-OHC, 

cholesterol 

[39] Picolinyl ester Hypersil GOLD C18 50 x 2.1 1.9 175 220 10 AA in H2O/ACN,  

40 °C 

5 ng/mL 15 4α-OHC, 4β-OHC 

 

[48] Picolinly ester Kinetex C18 100x 2.1 2.6 100 200 12 FA in 

H2O/MeOH, 

25 °C 

0.5-5 ng/mL 10 24S-OHC, 25-OHC, 27-

OHC 

[30-34] Girard P Hypersil GOLD C18 50 x 2.1 1.9 175 220 10 FA in 

H2O/MeOH/ACN 

 17 24S-OHC, 25-OHC, 27-

OHC, 7β-OHC, 7-O-

OHC,7α-OHC, 6-OHC 

[62] Girard P Kinetex C18 50 x 2.1 1.7 100 200 12 FA in 

H2O/MeOH/ACN 

 17 24S-OHC, 25-OHC, 27-

OHC, 7β-OHC, 7-O-OHC, 

7α-OHC, 6-OHC 

[25] Girard T ACE C18 150 x 1 3 300 100 9 FA in H2O/ACN, 

40 °C 

0.2 nM 20 25-OHC, 24S-OHC, 20α-

OHC, 22S-OHC 

 

[23] Girard T ACE C18 150 x 0.1 3 300 100 9 FA in H2O/MeOH 23 pM 40 22R-OHC, 24S-OHC, 25-

OHC, 27-OHC, 22S-OHC 

[24] Girard T ACE C18 150 x 0.3 3 300 100 9 FA in H2O/MeOH 25 pM 35 22R-OHC, 24S-OHC,25-

OHC, 27-OHC, 22S-OHC 

[45] Dimethylaminobutyrate 

ester 

Phenomenex Synergi fusion C18 50 x 2.1 4 100 475 12 FA + ammomium 

formate in 

H2O/ACN 

0.5 ng/mL 6 3β,5α,6β triol, 7-keto-OHC 

*Coelution 
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Table 2: Chromatographic conditions for native oxysterol separation 

REF Column Dimensions 

L x ID (mm) 

Particle 

size 

(µm) 

Pore 

size 

(Å) 

Surface 

area 

(m2/g) 

Carbon 

load (%) 

Mobile phases and 

Temperature 

Detection 

limits 

Run time 

(min) 

Analytes in retention order 

[63] Zorbax Eclipse Plus C18    150 x 2.1   3.5 95 160  9 Ammonium acetate in 
H2O/MeOH/ 
30°C 

 30 24-OHC, 27-OHC, 
desmosterol, cholesterol, 
lanosterol, cholestanol 
stigmasterol campesterol, β-
sitosterol, sitostanol 

[26] Nucleosil C18 HD  125 x 2 5 120 200 11 Ammonium acetate in 

MeOH/ACN/ H2O 

 

25 ng/ml 35 24S-OHC, 27-OHC 

[19] Nucleosil 5-CN 250 x 2 5 100 350 5 Heptane/Propan-2-ol  

 

16 ng 20 Cholesterol, 5,6α-EP, 25-

OHC, 7-keto, 7β-OHC and 

3β,5α,6β triol 

Ultracarb ODS (20) C18 250 x 2  5 90 370 22 MeOH/ACN 

 

4 ng 20 25-OHC, 3β,5α,6β triol , 

7β-OHC, 7-keto, 5,6α-

epoxy-OHC, cholesterol 

[27] BetaBasic C18 250 x 2.1  5 150 200  13 Ammonium acetate in 

MeOH/ACN/H2O 

10°C 

30 ng 30 25-OHC, 24-OHC 

[64] Synergi Hydro 250 x 2  4 80 475 19 MeOH/ACN/H2O 

30°C 

0.1-0.4 

ng/ml 

25 3β,5α,6β triol , 7α-OHC, 

7β-OHC, 7-keto, β-epoxy-

OHC, α-epoxy, 6-keto 

[65] Supleco Ascentis®MS 

(C8) 

100 × 2.1  3 100 450 15 ACN/H2O/Ammonium 

acetate 

4 ng/ml 7 4β-OHC 

[66] Chromolith SpeedRod RP-

18e monolithic  

50 × 4.6  2  250 18 MeOH/H2O 0.1 ng/ml 7 cholestane 3ß,5α,6β-triol, 7-

α/β-hydroxycholesterol, 5,6-

β-epox-OHC, 5,6-α-epoxy-

OHC, 7-ketocholesterol, 
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cholesterol. 

[67] Nucleosil HD, C18 250 × 4.6  3 100 350 20 FA in MeOH/ H2O 10 ng/ml 14 27OHC 

[68] LiChrosorb RP-18  250 ×4  5 100 300 17 MeOH/ACN 

30°C 

0.2 ng 16 25-OH, 3β,5α,6β triol, 7β-
OH, 7-keto,5,6α –epoxy-
OHC,  
cholesterol 

[41] Kinetex C 18 150 ×2.1 2.6 100 200 12 Ammonium acetate in 

ACN/ /IPA 

1 ng/ml 12 60 analytes 

[69] ACQUITY UPLCTMBEH 
C18  

150 × 2.1  1.7 130 185 18 FA in MeOH/H2O 

40°C  

54 pg/ml 20 24-OHC, 25-OHC 7-OHC, 
4β-OHC and 7-keto 
cholesterol 

[21] Shimadzu Shim-pack ODS  100 × 3  2.2 8nm 470 20 H2O/ ACN 

50°C 

 16 24(S)-OHC, 25-OHC, 27-
OHC, 7α, 7β, 4α-,5,6β-
epoxy-OHC, 5,6α-epoxy-
OHC, 4β-OHC, cholesterol  

[70] ODS AQ C18  150 × 4  5 120 330 14 MeOH/ACN/H2O 100 ng/ml 30 25-OHC, cholestane-3β-5α-
6β-triol, 7β-OHC, 7-
ketocholesterol, 5,6α-epoxy-
OHC, cholesterol. 

[71] Aquasil C18  250 x 4.6   5 100 310 12 ACN/MeOH 
25°C 

0.5ng 19 7α-, 7β-, 25-OHC, 7-keto, 
3β,5α,6β triol, α-epoxy, β-
epoxy 

[72] Nova Pack CN HP 300 x 3.9 4 60 120 3 n-Hexane-2-Propanol 
32°C 

6-70 ng/ml 30 19-OHC, cholesterol, 20 α-
OHC, 22(R)-OHC, 24(S) –
OHC, 22(S)-OHC, 25-OHC, 
5,6 α-epoxy-OHC, 5,6 β-
epoxy-OHC, 25(R)-OHC,  
7-ketocholesterol, 7β-OHC, 
7α-OHC 

[73] NUCLEOSIL® C18 100 x 4  5 100 350 15 FA in MeOH/H2O/2-
propanol 

5-135 

pg/ml 

45 24-OHC, 25-OHC, 27-
OHC, 7β-OHC, 7-
ketocholesterol 

[5] Supelcosil LC-18-S 250 x 4.6  5 120 170 11 FA in MeOH/H2O 3.2 ng/ml 45 21 analytes 
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FIGURE LABELS 

 
Figure 1. GC-MS performance of the method by Diczfalusy and co-workers [13]. Broken 
lines are unlabeled compounds, and solid lines are deuterated internal standards. Compounds 
separated (plasma sample) are:  I. 7α-hydroxycholesterol, II. 7β-hydroxycholesterol, III. 
cholesterol-5α,6α-epoxide, IV. cholesterol-5β,6β-epoxide, V. cholestane-3β,5α,6β-triol, VI. 
24-hydroxycholesterol, VII. 25-hydroxycholesterol, VIII. 7-oxocholesterol, IX. 27-
hydroxycholesterol. All compounds were derivatized with TMS. Reprinted with permission. 
 
Figure 2. GC-MS performance of the method by M T Rodriguez-Estrada and co-workers 
[15]. The total ion current chromatogram shows a fast GC-MS separation of 1. 7α-
hydroxycholesterol, 2. 19-hydroxycholesterol, 3. 7β-hydroxycholesterol, 4. β‐
epoxycholesterol, 5. α‐epoxycholesterol, 6, cholestanetriol, 7. 25-hydroxycholesterol; 8, 7-
ketocholesterol. All compounds were derivatized with TMS. Reprinted with permission. 
 
Figure 3. LC-MS performance of the method by S Matysik and co-workers [42]. Selected 
peaks: 1. 25-hydroxycholesterol, 2. 24(S)-hydroxycholesterol, 3. 27-hydroxycholesterol, 4. 
7β-hydroxycholesterol, 5. 7α-hydroxycholesterol, 6. 4β-hydroxycholesterol, 7. 7-
ketocholesterol, 8. cholestan-3β,5α,6β-triol. All compounds were derivatized with DMG. 
Reprinted with permission. 
 
Figure 4. The most common derivatizations reaction end products for oxysterol analysis; 
Girard P, Girard T, Picolinyl ester and N,N-dimethylglycin. 
 
 
Figure 5. GCxGC-FID performance of the method by Tranchida et al. [51]. The 2D 
chromatogram is of a commercial sunflower oil («sterol zone»). Compounds are: 1. 
Cholesterol (methylsterol = DesMe), 2. Brassicasterol (DesMe), 3. Ergosta-5,7,9(11),22-
tetraen-3beta-ol (DesMe), 4. Ergosterol (DesMe), 5. 24-methylene-cholesterol (DesMe), 6. 
Campesterol (DesMe), 7. Campestanol (DesMe), 8. Stigmasterol (DesMe), 9. Ergosta-7-en-
3β-ol (DesMe), 10. Clerosterol (DesMe), 11. β-sitosterol (DesMe), 12. Lupeol (dimethylsterol 
= DiMe), 13. ∆5-avenasterol (DesMe), 14. Parkeol (DiMe), 15. β-amyrin (DiMe), 16. ∆7-
stigmastenol (DesMe), 17. ∆7-sitosterol (DesMe), 18. Cycloartenol (DiMe), 19. ∆

7-
avenasterol (DesMe), 20. α-amyrin (DiMe), 21. 24-methylene-cycloartanol (DiMe), 22. 
Citrostadienol (methylsterol = Me), 23. Erythrodiol (Diol). Reprinted with permission. 
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Highlights 

� Gas chromatography for oxysterols is well established 

� More diversity in liquid chromatography approaches 

� Approaches to enhancing speed and selectivity with LC are presented 

� Few differences in chromatography between native and derivatized oxysterols 

� Alternative approaches to separation of oxysterols exist, but are little explored 

 


