80 research outputs found

    The Psychological and Neural Basis of Loss Aversion

    Get PDF
    Loss aversion is a central element of prospect theory, the dominant theory of decision making under uncertainty for the past four decades, and refers to the overweighting of potential losses relative to equivalent gains, a critical determinant of risky decision making. Recent advances in affective and decision neuroscience have shed new light on the psychological and neurobiological mechanisms underlying loss aversion. Here, integrating disparate literatures from the level of neurotransmitters to subjective reports of emotion, we propose a novel neural and computational framework that links norepinephrine to loss aversion and identifies a distinct role for dopamine in risk taking for rewards. We also propose that loss aversion specifically relates to anticipated emotions and aspects of the immediate experience of realized gains and losses but not their long-term emotional consequences, highlighting an underappreciated temporal structure. Finally, we discuss challenges to loss aversion and the relevance of loss aversion to understanding psychiatric disorders. Refining models of loss aversion will have broad consequences for the science of decision making and for how we understand individual variation in economic preferences and psychological well-being across both healthy and psychiatric populations

    Measuring self-regulation in everyday life: reliability and validity of smartphone-based experiments in alcohol use disorder

    Get PDF
    Self-regulation, the ability to guide behavior according to one’s goals, plays an integral role in understanding loss of control over unwanted behaviors, for example in alcohol use disorder (AUD). Yet, experimental tasks that measure processes underlying self-regulation are not easy to deploy in contexts where such behaviors usually occur, namely outside the laboratory, and in clinical populations such as people with AUD. Moreover, lab-based tasks have been criticized for poor test–retest reliability and lack of construct validity. Smartphones can be used to deploy tasks in the field, but often require shorter versions of tasks, which may further decrease reliability. Here, we show that combining smartphone-based tasks with joint hierarchical modeling of longitudinal data can overcome at least some of these shortcomings. We test four short smartphone-based tasks outside the laboratory in a large sample (N = 488) of participants with AUD. Although task measures indeed have low reliability when data are analyzed traditionally by modeling each session separately, joint modeling of longitudinal data increases reliability to good and oftentimes excellent levels. We next test the measures’ construct validity and show that extracted latent factors are indeed in line with theoretical accounts of cognitive control and decision-making. Finally, we demonstrate that a resulting cognitive control factor relates to a real-life measure of drinking behavior and yields stronger correlations than single measures based on traditional analyses. Our findings demonstrate how short, smartphone-based task measures, when analyzed with joint hierarchical modeling and latent factor analysis, can overcome frequently reported shortcomings of experimental tasks

    Measuring self-regulation in everyday life: Reliability and validity of smartphone-based experiments in alcohol use disorder

    Get PDF
    Self-regulation, the ability to guide behavior according to one's goals, plays an integral role in understanding loss of control over unwanted behaviors, for example in alcohol use disorder (AUD). Yet, experimental tasks that measure processes underlying self-regulation are not easy to deploy in contexts where such behaviors usually occur, namely outside the laboratory, and in clinical populations such as people with AUD. Moreover, lab-based tasks have been criticized for poor test-retest reliability and lack of construct validity. Smartphones can be used to deploy tasks in the field, but often require shorter versions of tasks, which may further decrease reliability. Here, we show that combining smartphone-based tasks with joint hierarchical modeling of longitudinal data can overcome at least some of these shortcomings. We test four short smartphone-based tasks outside the laboratory in a large sample (N = 488) of participants with AUD. Although task measures indeed have low reliability when data are analyzed traditionally by modeling each session separately, joint modeling of longitudinal data increases reliability to good and oftentimes excellent levels. We next test the measures' construct validity and show that extracted latent factors are indeed in line with theoretical accounts of cognitive control and decision-making. Finally, we demonstrate that a resulting cognitive control factor relates to a real-life measure of drinking behavior and yields stronger correlations than single measures based on traditional analyses. Our findings demonstrate how short, smartphone-based task measures, when analyzed with joint hierarchical modeling and latent factor analysis, can overcome frequently reported shortcomings of experimental tasks

    The Psychological and Neural Basis of Loss Aversion

    No full text
    Loss aversion is a central element of prospect theory, the dominant theory of decision making under uncertainty for the past four decades, and refers to the overweighting of potential losses relative to equivalent gains, a critical determinant of risky decision making. Recent advances in affective and decision neuroscience have shed new light on the psychological and neurobiological mechanisms underlying loss aversion. Here, integrating disparate literatures from the level of neurotransmitters to subjective reports of emotion, we propose a novel neural and computational framework that links norepinephrine to loss aversion and identifies a distinct role for dopamine in risk taking for rewards. We also propose that loss aversion specifically relates to anticipated emotions and aspects of the immediate experience of realized gains and losses but not their long-term emotional consequences, highlighting an underappreciated temporal structure. Finally, we discuss challenges to loss aversion and the relevance of loss aversion to understanding psychiatric disorders. Refining models of loss aversion will have broad consequences for the science of decision making and for how we understand individual variation in economic preferences and psychological well-being across both healthy and psychiatric populations

    Measuring Beliefs and Rewards: A Neuroeconomic Approach

    No full text
    The neurotransmitter dopamine is central to the emerging discipline of neuroeconomics; it is hypothesized to encode the difference between expected and realized rewards and thereby to mediate belief formation and choice. We develop the first formal tests of this theory of dopaminergic function, based on a recent axiomatization by Caplin and Dean (Quarterly Journal of Economics, 123 (2008), 663-702). These tests are satisfied by neural activity in the nucleus accumbens, an area rich in dopamine receptors. We find evidence for separate positive and negative reward prediction error signals, suggesting that behavioral asymmetries in responses to losses and gains may parallel asymmetries in nucleus accumbens activity. (c) 2010 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology..
    • …
    corecore