455 research outputs found

    Кераміка для техніки

    Get PDF
    The benthic invertebrates fauna of most of the saline lakes of the Sud Lipez region (Bolivia, Altiplano) has been until now quite unstudied. Samples collected during an extensive survey of 12 lakes and two small inflow rivers allow a first list of the main macroinvertebrates living in the biotopes. The heterogeneous nature of these saline lakes with their freshwater springs and phreatic inflows offers a variety of habitats to macroinvertebrates. The benthic fauna in lakes with salinity > 10 g l-1 is not so low in density but includes few species and is dominated by Orthocladinae and Podonominae larvae. In contrast, the freshwater springs and inflows are colonized by a diverse fauna with a mixture of both freshwater and saline taxa, but dominated by Elmidae and Amphipoda. The lakes are quite isolated and, apart from some cosmopolitan organisms, their fauna can be quite distinctive. (Résumé d'auteur

    Helicopter Flight Test of a Compact, Real-Time 3-D Flash Lidar for Imaging Hazardous Terrain During Planetary Landing

    Get PDF
    A second generation, compact, real-time, air-cooled 3-D imaging Flash Lidar sensor system, developed from a number of cutting-edge components from industry and NASA, is lab characterized and helicopter flight tested under the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project. The ALHAT project is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar incorporates a 3-D imaging video camera based on Indium-Gallium-Arsenide Avalanche Photo Diode and novel micro-electronic technology for a 128 x 128 pixel array operating at a video rate of 20 Hz, a high pulse-energy 1.06 m Neodymium-doped: Yttrium Aluminum Garnet (Nd:YAG) laser, a remote laser safety termination system, high performance transmitter and receiver optics with one and five degrees field-of-view (FOV), enhanced onboard thermal control, as well as a compact and self-contained suite of support electronics housed in a single box and built around a PC-104 architecture to enable autonomous operations. The Flash Lidar was developed and then characterized at two NASA-Langley Research Center (LaRC) outdoor laser test range facilities both statically and dynamically, integrated with other ALHAT GN&C subsystems from partner organizations, and installed onto a Bell UH-1H Iroquois "Huey" helicopter at LaRC. The integrated system was flight tested at the NASA-Kennedy Space Center (KSC) on simulated lunar approach to a custom hazard field consisting of rocks, craters, hazardous slopes, and safe-sites near the Shuttle Landing Facility runway starting at slant ranges of 750 m. In order to evaluate different methods of achieving hazard detection, the lidar, in conjunction with the ALHAT hazard detection and GN&C system, operates in both a narrow 1deg FOV raster-scanning mode in which successive, gimbaled images of the hazard field are mosaicked together as well as in a wider, 4.85deg FOV staring mode in which digital magnification, via a novel 3-D superresolution technique, is used to effectively achieve the same spatial precision attained with the more narrow FOV optics. The lidar generates calibrated and corrected 3-D range images of the hazard field in real-time and passes them to the ALHAT Hazard Detection System (HDS) which stitches the images together to generate on-the-fly Digital Elevation Maps (DEM's) and identifies hazards and safe-landing sites which the ALHAT GN&C system can then use to guide the host vehicle to a safe landing on the selected site. Results indicate that, for the KSC hazard field, the lidar operational range extends from 100m to 1.35 km for a 30 degree line-of-sight angle and a range precision as low as 8 cm which permits hazards as small as 25 cm to be identified. Based on the Flash Lidar images, the HDS correctly found and reported safe sites in near-real-time during several of the flights. A follow-on field test, planned for 2013, seeks to complete the closing of the GN&C loop for fully-autonomous operations on-board the Morpheus robotic, rocket-powered, free-flyer test bed in which the ALHAT system would scan the KSC hazard field (which was vetted during the present testing) and command the vehicle to landing on one of the selected safe sites

    An international multidisciplinary consensus statement on fasting before procedural sedation in adults and children

    Get PDF
    The multidisciplinary International Committee for the Advancement of Procedural Sedation presents the first fasting and aspiration prevention recommendations specific to procedural sedation, based on an extensive review of the literature. These were developed using Delphi methodology and assessment of the robustness of the available evidence. The literature evidence is clear that fasting, as currently practiced, often substantially exceeds recommended time thresholds and has known adverse consequences, for example, irritability, dehydration and hypoglycaemia. Fasting does not guarantee an empty stomach, and there is no observed association between aspiration and compliance with common fasting guidelines. The probability of clinically important aspiration during procedural sedation is negligible. In the post-1984 literature there are no published reports of aspiration-associated mortality in children, no reports of death in healthy adults (ASA physical status 1 or 2) and just nine reported deaths in adults of ASA physical status 3 or above. Current concerns about aspiration are out of proportion to the actual risk. Given the lower observed frequency of aspiration and mortality than during general anaesthesia, and the theoretical basis for assuming a lesser risk, fasting strategies in procedural sedation can reasonably be less restrictive. We present a consensus-derived algorithm in which each patient is first risk-stratified during their pre-sedation assessment, using evidence-based factors relating to patient characteristics, comorbidities, the nature of the procedure and the nature of the anticipated sedation technique. Graded fasting precautions for liquids and solids are then recommended for elective procedures based upon this categorisation of negligible, mild or moderate aspiration risk. This consensus statement can serve as a resource to practitioners and policymakers who perform and oversee procedural sedation in patients of all ages, worldwide

    Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3

    Get PDF
    TLR2 promotes NLRP3 inflammasome activation via an early MyD88-IRAK1-dependent pathway that provides a priming signal (signal 1) necessary for activation of the inflammasome by a second potassium-depleting signal (signal 2). Here we show that TLR3 binding to dsRNA promotes post-translational inflammasome activation through intermediate and late TRIF/RIPK1/FADD-dependent pathways. Both pathways require the scaffolding but not the catalytic function of caspase-8 or RIPK1. Only the late pathway requires kinase competent RIPK3 and MLKL function. Mechanistically, FADD/caspase-8 scaffolding function provides a post-translational signal 1 in the intermediate pathway, whereas in the late pathway it helps the oligomerization of RIPK3, which together with MLKL provides both signal 1 and 2 for inflammasome assembly. Cytoplasmic dsRNA activates NLRP3 independent of TRIF, RIPK1, RIPK3 or mitochondrial DRP1, but requires FADD/caspase-8 in wildtype macrophages to remove RIPK3 inhibition. Our study provides a comprehensive analysis of pathways that lead to NLRP3 inflammasome activation in response to dsRNA

    Preparation and Integration of ALHAT Precision Landing Technology for Morpheus Flight Testing

    Get PDF
    The Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project has developed a suite of prototype sensors for enabling autonomous and safe precision land- ing of robotic or crewed vehicles on solid solar bodies under varying terrain lighting condi- tions. The sensors include a Lidar-based Hazard Detection System (HDS), a multipurpose Navigation Doppler Lidar (NDL), and a long-range Laser Altimeter (LAlt). Preparation for terrestrial ight testing of ALHAT onboard the Morpheus free- ying, rocket-propelled ight test vehicle has been in progress since 2012, with ight tests over a lunar-like ter- rain eld occurring in Spring 2014. Signi cant work e orts within both the ALHAT and Morpheus projects has been required in the preparation of the sensors, vehicle, and test facilities for interfacing, integrating and verifying overall system performance to ensure readiness for ight testing. The ALHAT sensors have undergone numerous stand-alone sensor tests, simulations, and calibrations, along with integrated-system tests in special- ized gantries, trucks, helicopters and xed-wing aircraft. A lunar-like terrain environment was constructed for ALHAT system testing during Morpheus ights, and vibration and thermal testing of the ALHAT sensors was performed based on Morpheus ights prior to ALHAT integration. High- delity simulations were implemented to gain insight into integrated ALHAT sensors and Morpheus GN&C system performance, and command and telemetry interfacing and functional testing was conducted once the ALHAT sensors and electronics were integrated onto Morpheus. This paper captures some of the details and lessons learned in the planning, preparation and integration of the individual ALHAT sen- sors, the vehicle, and the test environment that led up to the joint ight tests

    The Transcriptional Regulatory Network of Mycobacterium tuberculosis

    Get PDF
    Under the perspectives of network science and systems biology, the characterization of transcriptional regulatory (TR) networks beyond the context of model organisms offers a versatile tool whose potential remains yet mainly unexplored. In this work, we present an updated version of the TR network of Mycobacterium tuberculosis (M.tb), which incorporates newly characterized transcriptional regulations coming from 31 recent, different experimental works available in the literature. As a result of the incorporation of these data, the new network doubles the size of previous data collections, incorporating more than a third of the entire genome of the bacterium. We also present an exhaustive topological analysis of the new assembled network, focusing on the statistical characterization of motifs significances and the comparison with other model organisms. The expanded M.tb transcriptional regulatory network, considering its volume and completeness, constitutes an important resource for diverse tasks such as dynamic modeling of gene expression and signaling processes, computational reliability determination or protein function prediction, being the latter of particular relevance, given that the function of only a small percent of the proteins of M.tb is known

    Key factors influencing adoption of an innovation in primary health care: a qualitative study based on implementation theory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bridging the knowledge-to-practice gap in health care is an important issue that has gained interest in recent years. Implementing new methods, guidelines or tools into routine care, however, is a slow and unpredictable process, and the factors that play a role in the change process are not yet fully understood. There is a number of theories concerned with factors predicting successful implementation in various settings, however, this issue is insufficiently studied in primary health care (PHC). The objective of this article was to apply implementation theory to identify key factors influencing the adoption of an innovation being introduced in PHC in Sweden.</p> <p>Methods</p> <p>A qualitative study was carried out with staff at six PHC units in Sweden where a computer-based test for lifestyle intervention had been implemented. Two different implementation strategies, implicit or explicit, were used. Sixteen focus group interviews and two individual interviews were performed. In the analysis a theoretical framework based on studies of implementation in health service organizations, was applied to identify key factors influencing adoption.</p> <p>Results</p> <p>The theoretical framework proved to be relevant for studies in PHC. Adoption was positively influenced by positive expectations at the unit, perceptions of the innovation being compatible with existing routines and perceived advantages. An explicit implementation strategy and positive opinions on change and innovation were also associated with adoption. Organizational changes and staff shortages coinciding with implementation seemed to be obstacles for the adoption process.</p> <p>Conclusion</p> <p>When implementation theory obtained from studies in other areas was applied in PHC it proved to be relevant for this particular setting. Based on our results, factors to be taken into account in the planning of the implementation of a new tool in PHC should include assessment of staff expectations, assessment of the perceived need for the innovation to be implemented, and of its potential compatibility with existing routines. Regarding context, we suggest that implementation concurrent with other major organizational changes should be avoided. The choice of implementation strategy should be given thorough consideration.</p
    corecore