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Caspase-8 scaffolding function and MLKL regulate

NLRP3 inflammasome activation downstream of
TLR3

Seokwon Kang'*, Teresa Fernandes-Alnemri'*, Corey Rogers', Lindsey Mayes', Ying Wang?, Christopher Dillon3,
Linda Roback?®, William Kaiser?, Andrew Oberst, Junji Sagara®, Katherine A. Fitzgerald’, Douglas R. Green3,
Jianke Zhang8, Edward S. Mocarski* & Emad S. Alnemri!

TLR2 promotes NLRP3 inflammasome activation via an early MyD88-IRAKI-dependent
pathway that provides a priming signal (signal 1) necessary for activation of the
inflammasome by a second potassium-depleting signal (signal 2). Here we show that TLR3
binding to dsRNA promotes post-translational inflammasome activation through intermediate
and late TRIF/RIPK1/FADD-dependent pathways. Both pathways require the scaffolding but
not the catalytic function of caspase-8 or RIPK1. Only the late pathway requires kinase
competent RIPK3 and MLKL function. Mechanistically, FADD/caspase-8 scaffolding function
provides a post-translational signal 1 in the intermediate pathway, whereas in the late
pathway it helps the oligomerization of RIPK3, which together with MLKL provides both signal
1 and 2 for inflammasome assembly. Cytoplasmic dsRNA activates NLRP3 independent of
TRIF, RIPK1, RIPK3 or mitochondrial DRP1, but requires FADD/caspase-8 in wildtype
macrophages to remove RIPK3 inhibition. Our study provides a comprehensive analysis of
pathways that lead to NLRP3 inflammasome activation in response to dsRNA.
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oll-like receptors (TLRs) are pattern recognition receptors

that sense a broad range of microbial ligands leading to

NF-kB and IRF3 activation and expression of genes
involved in inflammation and other immune responses"2. TLR
activation also leads to cell death and inflammasome activation*,
TLR signalling involves homo- or hetero-dimerization of TLRs to
bring their TIR domains in close proximity to each other,
allowing the recruitment of specific TIR domain-containing
adaptor molecules such as MyD88, TRIF, TIRAP (also called
Mal) and TRAM>. All TLRs associate directly or indirecﬂy
with MyD88 except for TLR3, which associates with TRIF>~.
TLR4 is the only TLR that can associate with both TRIF and
MyD88 (refs 5-7).

On binding of TLR3 to double-stranded RNA (dsRNA), it
recruits TRIF through TIR-TIR homotypic domain interactions
resulting in TRIF oligomerization®. Several outcomes follow this
interaction in macrophages, depending on the composition of the
complexes that are nucleated by oligomerized TRIF. Formation of a
TRIF-TRAF6 complex results in TAKI activation with subsequent
activation of mitogen-activated protein kinases and NF-kB;
whereas, formation of TRIF-TRAF3 activates TBK1 and IKKGe,
and subsequent activation of type I interferons!. A third complex
can also form by direct interaction of TRIF with either RIPK1 or
RIPK3 through their respective RHIM domains!3-1°, In cultured
murine macrophages, low levels of cellular FLICE-like inhibitory
protein results in a TRIF-RIPK1 complex, which recruits FADD
and caspase-8 leading to induction of apoptosis®®. When caspase-8
activity is compromised, this complex recruits RIPK3 to drive
MLKL-dependent necroptosis®12. In other cultured cells such as
mouse embryonic fibroblasts, TRIF may directly recruit RIPK3 to
initiate necroptosis independent of RIPK1 (refs 8,10).

NLRP3 is a member of the NLR family of cytoplasmic pattern
recognition receptors!®. NLRP3 directs the assembly of an
inflammasome complex with ASC and procaspase-1 after
receiving a priming signal (or signal 1) from TLRs and a
second signal (or signal 2) from purinergic receptors or
pore-forming toxins'*71®, Our recent studies showed that
acute TLR2 stimulation triggers a rapid signalling pathway
dependent on MyD88, IRAKI and IRAK4, that leads to
post-translational priming of NLRP3 (ref. 17). Interestingly, a
second, slightly delayed TLR3- and TRIF-dependent pathway,
can also lead to post-translational priming of NLRP3 (ref. 17), but
the particular signalling steps involved in this novel pathway
remain unknown.

Here we dissect the signal transduction pathways involved in
the post-translational priming of NLRP3 by TLR3 signalling in
response to extracellular dsRNA in macrophages. We show that
TLR3 stimulation can activate two pathways that promote NLRP3
activation, intermediate and late, depending on the nature of the
signalling molecules recruited downstream of the TRIF-RIPK1
complex. Caspase-8 scaffolding function, but not its catalytic
activity, is crucial in both pathways, whereas RIPK3/MLKL
activity is only required for the late pathway. We further show
that cytoplasmic dsRNA can also promote NLRP3 activation
through a distinct pathway that requires FADD/caspase-8
in wildtype (WT) macrophages, but not in RIPK3-deficient
macrophages. Our results provide a comprehensive analysis of
the NLRP3 inflammasome pathways activated by dsRNA and
provide the first example of signalling by the FADD-caspase-8
complex independent of its catalytic activity.

Results

NLRP3 priming by TLR3 requires TRIF/RIPK1/FADD/caspase-8.
Our recent studies showed that stimulation of TLR3 with the
synthetic dsRNA poly(I:C) primes NLRP3 activation through a

2

post-translational, TRIF-dependent pathway designated
‘intermediate pathway’'”. However, stimulation of TLR2 with
Pam3CSK4 primes NLRP3 activation through a post-translational,
MyD88-IRAK4-IRAK1-dependent pathway designated ‘early or
rapid pathway’!”. Consistent with these findings, ATP-activated
caspase-1 in WT macrophages when added 30-60min after
TLR3 stimulation with poly(I:C) (Fig. la, middle panels).
Very little activation occurred when ATP was added 10 or
180min after poly(I:C) stimulation, indicating that maximum
inflammasome activation occurred within an intermediate time
window of 30-60min following TLR3-TRIF activation
(Supplementary Fig. 1). A more rapid activation of caspase-1
occurred when ATP was added 10min after stimulation of the
TLR2-MyD88 pathway with Pam3CSK4 but declined at 30 min or
later (Fig. 1a, left panels). As expected, robust caspase-1 activation
occurred when ATP was added at all treatment times following
TLR4 stimulation with lipopolysaccharide (LPS), which activates
both the MyD88 and TRIF pathways (Fig. 1a, right panels).

To further investigate the TLR3 signalling component(s)
contributing to this activation pattern, we performed similar
time course studies in macrophages deficient in known signalling
molecules downstream of TRIF (Fig. 1b-g). RIPK1 and RIPK3 are
involved in necroptosis signalling by TLR3 in macrophages®!%.
Similar to the TRIF-knockout (TRIF-KO) macrophages,
stimulation of RIPK1-KO macrophages with poly(I:C) plus
ATP failed to induce the pattern of caspase-1 activation
observed in WT macrophages, although these cells had a
normal response to Pam3CSK4 plus ATP or LPS plus ATP
(Fig. 1b). However, unlike the TRIF-KO macrophages, there
was a weak caspase-1 activation in the RIPK1-KO at the 60
and 180 min time points and no decline in caspase-1 activation at
the same time points in response to LPS plus ATP treatment
(Fig. 1c). This could be explained by the recent findings that
TRIF can recruit RIPK3 directly in the absence of RIPK1
when TLR3 or TLR4 are stimulated resulting in activation of a
TRIF-RIPK3-MLKL pathway'?, which is likely responsible for
this late activation of caspase-1. In contrast to RIPK1 or TRIF-KO
macrophages, RIPK3-KO macrophages showed normal caspase-1
activation in response to the inducers tested (Fig. 1d).

Considering that RIPKI is an adaptor protein that recruits
FADD and caspase-8 to activate apoptosis, we examined whether
FADD or caspase-8 deficiency impacts TLR3-mediated NLRP3
activation. Given that FADD or caspase-8 deficiency is embryonic
lethal'®2! and unleashes RIPK3-mediated necroptosis, we
employed macrophages from either FADD/RIPK3 or caspase-8/
RIPK3 double knockout (DKO) mice?*~24, Notably, like TRIF-KO
macrophages, FADD/RIPK3-DKO and caspase-8/RIPK3-DKO
macrophages failed to activate caspase-1 in response to poly(I:C)
plus ATP (Fig. le,f, middle panels) even though both lines showed
caspase-1 activation in response to Pam3CSK4 plus ATP or LPS
plus ATP, although there was a time-dependent loss of sensitivity
to LPS plus ATP (Fig. lef, left and right panels). Similar results
were obtained with caspase-8/RIPK1/RIPK3 triple knockout
(TKO) macrophages'®!2" (Fig. 1g). Collectively, these results
indicate that post-translational priming of the NLRP3
inflammasome by extracellular dsRNA through the intermediate
pathway requires RIPK1, FADD and caspase-8.

dsRNA and signal 2 induce NLRP3-mediated pyroptosis.
Activation of caspase-1 by the inflammasomes can lead to
pyroptotic cell death in macrophages?>2%, which can be measured
by assaying the activity of released lactate dehydrogenase (LDH)
in the culture medium. Consistent with the caspase-1 activation
patterns described above (Fig. 1), activation of the intermediate
pathway with poly(I:C) and ATP-induced LDH release from WT
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Figure 1| RIPK1, FADD and caspase-8 are required for activation of the NLRP3 inflammasome by dsRNA. Immunoblots of caspase-1 in the culture
supernatants (Sup) or cell lysates (Lys) of C57BL/6 mouse macrophages derived from WT (a) RIPK1-KO (b) TRIF-KO (¢) RIPK3-KO (d) FADD/RIPK3-DKO
(e) caspase-8/RIPK3-DKO (f) Caspase-8/RIPK1/RIPK3-TKO (g) mice, treated with Pam3CSK4 (Pam), poly(l:C) or LPS for the indicated times (min)
followed by stimulation with ATP for an additional 45 min. Results are representative of at least three independent experiments.

and RIPK3-KO, but failed to induce significant release of LDH
from TRIF-KO, RIPK1-KO, caspase-8/RIPK3-DKO or caspase-8/
RIPK1/RIPK3-TKO macrophages (Fig. 2a). In contrast,
normal LDH release was observed in WT and all of these
knockout macrophages in response to Pam3CSK4 and ATP
(Fig. 2b). These results indicate that activation of the
inflammasome by extracellular dsRNA and ATP can lead to
TRIF/RIPK1/caspase-8-dependent pyroptotic cell death.
Extracellular dsRNA is normally produced by virally infected
cells especially when they are infected with dsRNA viruses like
rotaviruses. Rotaviruses infect the gastrointestinal tract and this
can frequently coincide with co-infection with gram-positive
bacteria such as Listeria monocytogenes or other NLRP3-
activating toxin-producing bacteria?”=2°. Listeria is unable to
activate NLRP3 through the intermediate pathway, but can
activate it through the early MyD88-dependent pathway by
simultaneously stimulating host TLR2-MyD88 signalling with
its lipoprotein while disrupting host cell membrane by its
pore-forming listeriolysin O (refs 17,30). However, in the
presence of viral dsRNA it might activate NLRP3 via the
intermediate pathway. To test this possibility we infected WT,
NLRP3-KO and MyD88-KO macrophages with Listeria with or
without prior priming with poly(I:C). Listeria was not able to
activate caspase-1 in MyD88-KO or NLRP3-KO macrophages,
but was able to activate it in MyD88-KO macrophages primed
with poly(I:C) (Fig. 2c). However, Listeria activated caspase-1 in
WT macrophages both with or without prior priming with
poly(I:C), although there was notably enhanced activation in the
presence of poly(I:C) compared with in its absence (Fig. 2c, right
panels). Activation of caspase-1 by Listeria was associated with
induction of pyroptosis as determined by LDH release (Fig. 2d).
These results suggest that gram-positive bacteria, which possess
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pore-forming toxins that can act as a signal 2 for NLRP3
activation, are able to activate NLRP3 through the intermediate
pathway when this pathway is stimulated by viral dsRNA,
which acts as a signal 1. This scenario can likely happen in cases
of co-infection with NLRP3-activating toxin-producing bacteria
such as L. monocytogenes or Staphylococcus aureus and dsRNA
viruses such as rotavirus?’~%.

NLRP3 priming by TLR3 requires caspase-8 scaffolding function.
The role of caspase-8 in NLRP3 activation remains incompletely
resolved. Studies in caspase-8 conditional knockout dendritic
cells (caspase-8-cKO DCs) implicated caspase-8 as an inhibitor of
RIPK3-mediated NLRP3 activation®!, but these observations are
clouded b?r the fact that caspase-8-compromise unleashes
necroptosis 921 In contrast, studies with caspase-8/RIPK3-DKO
macrophages and mice reveal a contribution of caspase-8 catalytic
activity in NLRP3 activation that is independent of RIPK3 (ref. 32).
To address the exact role of caspase-8 in NLRP3 activation we asked
whether caspase-8 catalytic activity is required for the intermediate
pathway of NLRP3 activation by extracellular dsRNA. We
stimulated macrophages with poly(I:C) and ATP in the presence
or absence of the pan-caspase inhibitor Benzyloxycarbonyl-
Val-Ala-Asp (OMe) fluoromethylketone (zVAD). Because zZVAD
can inhibit caspase-1 and caspase-8 activation, we used the ASC
polymerization assay>>**** as an indicator of NLRP3 activation.
Stimulation with poly(I:C) and ATP both in the presence or
absence of zVAD induced high amounts of polymerized ASC in the
pellet fractions of WT and RIPK3-KO, but not RIPKI-KO
macrophages (Fig. 3a—c), indicating that inhibition of caspase-8
activity does not interfere with the intermediate pathway of NLRP3
activation. The requirement for caspase-8 (Fig. 1f,g), but not its
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Figure 2 | dsRNA priming promotes NLRP3-induced pyroptosis. LDH release in the culture supernatants of macrophages from WT and the indicated
mouse knockout strains, treated with poly(l:C) (a) or Pam3CSK4 (Pam) (b) for the indicated times (min) followed by stimulation with ATP for an additional
45 min. DKO, caspase-8/RIPK3-DKO; TKO, caspase-8/RIPK1/RIPK3-TKO. Results are representative of at least three independent experiments. Error bars
represent s.d. (¢) Immunoblots of caspase-1in the culture supernatants (Sup) or cell lysates (Lys) of mouse macrophages derived from WT, MyD88-KO or
NLRP3-KO mice treated with poly(l:C) for the indicated times (min) followed by infection with Listeria (multiplicity of infection (MOI): 100) for an
additional 45 min. Caspase-1 activation in macrophages infected with Listeria alone without prior priming with poly(l:C) is shown in lanes 2 and 7 of the left
and right panels. (d) LDH release in the culture supernatants of macrophages derived from WT, MyD88-KO or NLRP3-KO mice treated with poly(l:C) for
the indicated times (min) followed by infection with Listeria (MOI: 100) for an additional 45 min. LDH release in macrophages infected with Listeria alone
without prior priming with poly(l:C) is shown in the second columns from left. Error bars represent s.d.

enzymatic activity (Fig. 3), suggests that caspase-8 scaffolding
function regulates NLRP3 activation in the intermediate pathway.

Intriguingly, stimulation with poly(I:C) and ATP in the
presence of zZVAD induced high amounts of polymerized ASC
in the pellet fraction of WT (Fig. 3all, fifth lane) but not
RIPK3-KO (Fig. 3bll, fifth lane) macrophages at the 180 min time
point. This suggests that caspase-8 inhibition by zVAD leads to
induction of a TRIF-RIPK1-RIPK3-dependent late pathway
(180 min) of NLRP3 activation in response to TLR3 signalling.
The activation of this late pathway in WT macrophages caused a
reduction in the amount of polymerized ASC at the 30-60 min
time points (intermediate pathway; Fig. 3all, third and fourth
lanes) compared with the same time points in the absence of
zVAD (Fig. 3al, third and fourth lanes). However, a similar
reduction was not observed in the RIPK3-KO macrophages
(Fig. 3bI and Fig. 3bll, third and fourth lanes), indicating that
recruitment of RIPK3 to the TRIF-RIPK1 complex might
interfere with the function or reduce the formation of the
TRIF-RIPK1-FADD-caspase-8 complex, which is required for
priming of NLRP3 by the intermediate pathway.

The pattern of polymerized ASC in response to stimulation
with Pam3CSK4 and ATP followed a similar time course in WT,
RIPK3 and RIPK1 macrophages, and there was very little
difference in the presence or absence of zVAD (Supplementary
Fig. 2a-c, panels I and II), indicating that caspase-8 does not play
a role in this pathway.

dsRNA and zVAD activate NLRP3 without signal 2. NLRP3
activation requires two signals; one is derived from TLRs

4

(signal 1) and a second signal (signal 2) is derived from purinergic
receptors or pore-forming toxins'41°, To examine whether the
observed  poly(I:C)-zVAD-activated  late  pathway  of
inflammasome activation requires an exogenous signal 2 from
P2X7 receptor, we stimulated WT macrophages with poly(I:C)
and zVAD followed by treatment with or without ATP. Time
course analysis of ASC polymerization showed that stimulation
with poly(I:C) and zVAD alone was able to induce robust ASC
polymerization comparable in magnitude to that observed when
cells were further stimulated with ATP (Fig. 4a, left and middle
panels). Poly(I:C) and zVAD stimulation without ATP treatment
did not induce ASC polymerization in RIPK3-KO, TRIF-KO or
NLRP3-KO macrophages (Fig. 4b, second to fourth panels from
left ), providing additional support for the critical role of RIPK3,
TRIF and NLRP3 in the late pathway of inflammasome
activation.

As the late pathway of ASC polymerization requires 3-4h of
poly(I:C) stimulation, we asked whether this pathway is
dependent on transcriptional upregulation of NLRP3 or
other inflammasome components. Treatment of cells with
actinomycin D, a potent transcription inhibitor, did not reduce
the amount of polymerized ASC in response to stimulation
with poly(I:C) and zVAD (Fig. 4a, right panel). On the
contrary, actinomycin D treatment increased the amount of
polymerized ASC and accelerated its formation kinetics.
Taken together, our results show that TLR3 stimulation in the
presence of inactive caspase-8 can lead to a TRIF-RIPK1-RIPK3-
dependent late pathway of NLRP3 inflammasome priming and
activation that is independent of exogenous signal 2 or new gene
synthesis.
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Figure 3 | Caspase-8 enzymatic activity is not required for dsRNA-induced ASC polymerization. (a-c) (upper panels) Immunoblots of disuccinimidyl
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as indicated. Immunoblots of caspase-1 in the culture supernatants (Sup) of the corresponding samples are shown underneath the ASC panels.
Immunoblots of total ASC in the cell lysates (Lys) of all samples is shown at the bottom of (a-c) panels. The ASC aggregates present in the NP40-insoluble
pellets are labelled ASC polymers. These fractionate as monomeric and dimeric ASC species following cross-linking with DSS, solubilization in SDS sample
buffer and subsequent fractionation on SDS-PAGE. Results are representative of at least three independent experiments.

RIPK3 kinase activity is required in the late pathway. To
examine whether the kinase activity of RIPK1 or RIPK3 is
important for NLRP3 activation, we performed time course stu-
dies of NLRP3 activation in response to stimulation with
Pam3CSK4, poly(I:C) or LPS in knock-in macrophages expres-
sing  kinase-dead  RIPK1 (RIPK1-KD) or  RIPK3
(RIPK3-KD)!!. Both RIPK1-KD and RIPK3-KD macrophages
had normal caspase-1 activation similar to WT macrophages in
response to Pam3CSK4, poly(I:C) or LPS plus ATP stimulation
(Supplementary Fig. 3a-c), indicating that the kinase activity
of RIPK1 or RIPK3 is not required for the early or intermediate
pathway of NLRP3 priming. Similarly, RIPK1-KD macrophages
had normal ASC polymerization similar to WT macrophages
in response to poly(I:C) plus zVAD (Fig. 5ab, left panels),
indicating that the kinase activity of RIPK1 is also not required
for priming or activation of the NLRP3 inflammasome by the
late pathway. However, although RIPK3-KD macrophages had

| 6:7515 | DOI: 10.1038/ncomms8515 | www.nature.com/naturecommunications

normal ASC polymerization during the intermediate pathway
(Fig. 5c, middle and right panels), they showed no ASC
polymerization during the late pathway in response to poly(I:C)
plus zVAD (Fig. 5b, left panels), indicating that the kinase activity
of RIPK3 is important. Consistent with this, treatment of
WT macrophages with the RIPK3-specific kinase inhibitor
GSK’872 (refs 8,35) completely inhibited inflammasome
activation by the RIPK3-dependent late pathway, but did not
inhibit inflammasome activation by the RIPK3-independent early
or intermediate pathways (Supplementary Fig. 4). Collectively,
these results show that RIPK3 and its kinase activity are
not required for priming of NLRP3 by the intermediate
pathway, but both RIPK3 and its kinase activity are needed
for priming and activation of NLRP3 by the late pathway.
In addition, although RIPK1 is required as an adaptor for both
the intermediate and late pathways of inflammasome activation,
its kinase activity is dispensable.
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Figure 4 | dsRNA and zVAD induce transcription- and signal 2-independent inflammasome activation. (a) Immunoblots of disuccinimidyl suberate
(DSS) cross-linked ASC in the NP40-insoluble pellets of WT macrophages after stimulation with poly(l:C) for the indicated times (min) in the presence
of zZVAD (left panel), zZVAD followed by stimulation with ATP for an additional 45 min (middle panel) or zZVAD plus actinomycin D (ActD, right panel)
as indicated. (b) Immunoblots of DSS cross-linked ASC in the NP40-insoluble pellets of WT (first panel), RIPK3-KO (second panel), TRIF-KO

(third panel) or NLRP3-KO (fourth panel) macrophages after stimulation with poly(I:C) for the indicated times (min) in the presence of zZVAD as indicated.
Immunoblots of total ASC in the cell lysates (Lys) of all samples is shown at the bottom of a, b panels. Results are representative of at least three

independent experiments.

NLRP3 activation by dsRNA and zVAD requires MLKL. MLKL
is an important substrate for RIPK3 kinase activity, and its
phosphorylation by RIPK3 leads to induction of necroptosis®®=7.
Notably, MLKL-KO macrophages like RIPK3-KO macrophages
are resistant to induction of necroptotic cell death by poly(I:C)
plus zVAD (Supplementary Fig. 4c), but they exhibit normal
caspase-1 activation similar to that observed in WT macrophages
in response to Pam3CSK4, poly(I:C) or LPS plus ATP (Fig. 6a).
As the late pathway of inflammasome activation requires the
kinase activity of RIPK3, and as MLKL activation has been shown
to trigger formation of plasma membrane pores®, we asked
whether MLKL could function as a signalling molecule that
facilitates NLRP3 activation downstream of RIPK3 by virtue of its
pore-forming activity. Time course studies of ASC polymerization
in MLKL-KO macrophages in response to poly(I:C) in the
presence of zVAD with or without ATP, showed an intact
intermediate pathway but a defective late pathway of
inflammasome activation (Fig. 6b). Similar studies in FADD/
MLKL-DKO macrophages showed that these cells have both
defective intermediate and late pathways (Supplementary Fig. 5).
These results indicate that intact necroptotic signalling controls
activation of the late pathway and further demonstrate that
FADD/caspase-8 signalling controls the intermediate pathway.
The inability of ATP to stimulate ASC polymerization in the late
pathway in MLKL-KO or FADD/MLKL-DKO macrophages
suggests that simultaneous signalling by RIPK3 and MLKL is
required to provide both signal 1 and signal 2 to activate NLRP3.
Together, these results indicate that MLKL is not critical for
inflammasome activation in the early or intermediate pathways,
but is particularly required during the late TRIF-RIPK1-RIPK3-
dependent pathway.

RIPK3 oligomerization by dsRNA and zVAD requires caspase-8.
To further investigate the role of caspase-8 in the late pathway, we
stably reconstituted immortalized RIPK3-KO and caspase-8/
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RIPK3-DKO macrophages with WT green fluorescent protein
(GFP)-tagged RIPK3. Notably, stable expression of RIPK3-GFP in
RIPK3-KO, but not in caspase-8/RIPK3-DKO macrophages sen-
sitized them to poly(I:C) plus zVAD as evidenced by induction of
ASC polymerization (Fig. 7a). Intriguingly, confocal imaging of
these macrophage lines after poly(I:C) plus zVAD treatment for
180 min showed RIPK3 oligomerization (aggregation) only in the
RIPK3-GFP-reconstituted RIPK3-KO but not in the caspase-8/
RIPK3-DKO macrophages (Fig. 7b). Furthermore, the RIPK3
inhibitor GSK’872 triggered a similar response in the reconstituted
RIPK3-KO but not the caspase-8/RIPK3-DKO macrophages
(Supplementary Fig. 6). No aggregation of RIPK3 was observed
when poly(I:C) or zVAD were added to the cells alone, but
GSK’872 was able to induce RIPK3 aggregation in RIPK3-KO-
RIPK3-GFP cells when added alone (Supplementary Fig. 6). Sti-
mulation of RIPK3-KO-RIPK3-GFP cells with poly(L:C) plus
zVAD for 45 or 180 min followed with or without ATP treatment
did not change the pattern of RIPK3-GFP aggregation
(Supplementary Fig. 7). There were only fewer cells that formed
RIPK3-GFP aggregates at 45min compared with 180 min after
stimulation, indicating that RIPK3 recruitment to the TRIF-RIPK1
complex starts as early as 45min after stimulation with poly(I:C)
plus zVAD. Consistent with the lack of RIPK3 involvement in the
intermediate pathway, stimulation of RIPK3-KO-RIPK3-GFP cells
with poly(I:C) for 45min followed by ATP treatment in the
absence of zVAD did not result in any RIPK3-GFP aggregation
(Supplementary Fig. 7). Combined, these results indicate that
caspase-8 is physically required for oligomerization of RIPK3
downstream of TLR3 and TRIF, as well as by binding of GSK’872
to RIPK3.

To provide additional evidence that direct oligomerization of
RIPK3 can induce NLRP3 activation we ectopically expressed a
chimeric protein com3posed of RIPK3 or RIPK3-ARHIM fused to
two copies of FKBPF?¢V (RIPK3-2xFV or RIPK3-ARHIM-2xFV,
respectively)®® in a 293T cell line stably reconstituted
with procaspase-1, ASC and NLRP3 (293T-C1AN cells), or a
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Figure 5 | Kinase activity of RIPK3 but not of RIPK1 is required in the late pathway. (a-c) Immunoblots of disuccinimidyl suberate cross-linked ASC in
the NP40-insoluble pellets of WT, kinase-dead RIPKT (RIPK1-KD) or RIPK3 (RIPK3-KD) macrophages after stimulation with poly(l:C) for the indicated times
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stimulation with ATP for an additional 45 min (right panel) as indicated. Immunoblots of caspase-1in the culture supernatants (Sup) of the corresponding
samples are shown underneath the ASC panels. Immunoblots of total ASC in the cell lysates (Lys) of all samples is shown at the bottom of a-c panels.

Results are representative of at least three independent experiments.

293T cell line stably reconstituted with only procaspase-1 and
ASC (293T-C1A cells). Treatment of the RIPK3-2xFV cells with
the homodimerization drug AP20187 led to activation of caspase-
1 in 293T-C1AN cells, but not in 293T-C1A cells (Fig. 7c). There
was no caspase-1 activation in the ARHIM expressing cells after a
similar treatment (Fig. 7c). Similar results were obtained when
these constructs were stably expressed in 293T-Cl1AN
(Supplementary Fig. 8). These results indicate that direct
oligomerization of RIPK3 can induce RHIM-dependent NLRP3
activation.

NLRP3 activation by cytoplasmic dsRNA requires caspase-8.
Cytoplasmic dsRNA and vesicular stomatitis virus (VSV) have
been reported to induce NLRP3 activation through a RIPK1-
RIPK3-DRPI1-dependent and TLR3/TRIF-independent path-
way?’. Our results show that transfected poly(I:C)-induced
caspase-1 activation indeed requires NLRP3 but not TRIF
signalling (Fig. 8a). However, poly(I:C)-induced caspase-1
activation in DRP1-KO macrophages derived from conditional
myeloid-specific DRP1-KO mice*! was comparable to WT
macrophages (Fig. 8b). DRP1-KO macrophages had also a
normal response to transfected poly(dA:dT), which activates the
AIM?2 inflammasome?® (Fig. 8b). Poly(I:C) induced similar

levels of caspase-1 activation with or without prior priming
with LPS (Fig. 8b, third to sixth lanes). However, poly(dA:dT)
required prior LPS priming to induce efficient caspase-1
activation (Fig. 8b, seventh to tenth lanes). DRP1-KO
macrophages also showed normal inflammasome activation
by the early, intermediate and late pathways (Supplementary
Fig. 9a-d). Similarly, deficiency in RIPK1 or RIPK3 had no effect
on poly(l:C)-induced NLRP3 activation (Fig. 8c, fourth
and nineteenth lanes), whereas kinase-dead RIPK3 enhanced it
(tenth lane). Together, these results indicate that DRP1, RIPK1 or
RIPK3 do not play a role in NLRP3 activation by cytoplasmic
dsRNA.

As FADD/caspase-8 signalling plays an important role in
activation of the inflammasome by extracellular dsRNA we
asked whether it plays a similar role in inflammasome activation
by transfected dsRNA. Caspase-8 deficiency in caspase-8/RIPK3-
DKO, or caspase-8/RIPK1/RIPK3-TKO macrophages did
not affect poly(I:C)-induced caspase-1 activation, which was
comparable to that in WT or RIPK3-KO macrophages (Fig. 8c,
fourteenth and twentieth lanes, and Supplementary Fig. 10).
Surprisingly, stable expression of RIPK3-GFP blocked poly(I:C)-
induced caspase-1 activation in caspase-8/RIPK3-DKO, but
not in RIPK3-KO immortalized macrophages (Fig. 8d and
Supplementary Fig. 11), suggesting that caspase-8 might only be
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Figure 6 | MLKL activity is critical in the late pathway. (a) Immunoblots of caspase-1 in the culture supernatants (Sup) or cell lysates (Lys) of mouse
macrophages derived from MLKL knockout (MLKL-KO) mice treated with Pam3CSK4 (Pam), poly(I:C) or LPS for the indicated times (min) followed by
stimulation with ATP for 45 min. (b) Immunoblots of disuccinimidyl suberate cross-linked ASC in the NP40-insoluble pellets of WT and MLKL-KO
macrophages after stimulation with poly(l:C) for the indicated times (min) in the presence of zZVAD (first and second panels) or zZVAD followed by
stimulation with ATP for an additional 45 min (third and fourth panels) as indicated. Immunoblots of total ASC in the cell lysates (Lys) of all samples is
shown at the bottom. Results are representative of at least three independent experiments.

required when RIPK3 is present. Consistent with this, transfected
poly(I:C) failed to induce robust caspase-1 activation in FADD/
MLKL-DKO macrophages, but induced comparable caspase-1
activation in MLKL-KO macrophages as in WT macrophages
(Fig. 8e). Altogether, these results demonstrate that the
cytoplasmic dsRNA sensor requires FADD/caspase-8 signalling
in WT macrophages to relieve the inhibition of RIPK3 and
facilitate NLRP3 inflammasome assembly.

VSV-induced NLRP3 activation partially requires RIPK3.
Infection of macrophages with single-stranded RNA viruses such
as VSV activates the NLRP3 inflammasome?®#2. Consistent with
this, NLRP3 deficiency blocked VSV-induced caspase-1 activation
(Fig. 9a). VSV has been reported to activate NLRP3 via
RIPK1-RIPK3-DRP1 signalling®®. However, our results show
that deletion of DRP1 or RIPK1 have no effect on inflammasome
activation by VSV infection (Fig. 9b,c). VSV was also still able to
induce caspase-1 activation and interleukin (IL)-1f generation in
RIPK3-KO macrophages (Fig. 9d and Supplementary Fig. 12)
although the intensity of caspase-1 activation in the RIPK3-KO
macrophages was partially reduced compared with WT
macrophages but was not absent like in the NLRP3-KO
macrophages (Fig. 9a). VSV-induced inflammasome activation
was also notably reduced in caspase-8/RIPK3-DKO and
caspase-8/RIPK1/RIPK3-TKO macrophages (Fig. 9e,f), but not
in MLKL-KO or FADD/MLKL-DKO macrophages (Fig. 9gh).
IL-1pB production from caspase-8/RIPK3-DKO, caspase-8/RIPK1/
RIPK3-TKO and FADD/MLKL-DKO macrophages was much
more reduced compared with that from RIPK3-KO macrophages
(Fig. 9d-fh) because FADD/caspase-8 deficiency causes
reduced expression of pro-IL-1B%2. VSV-induced inflammasome
activation was comparable in WT, TRIF-KO, RIPK1-KD and
RIPK3-KD macrophages and in the RIPK3-GFP-reconstituted
RIPK3-KO-RIPK3-GFP and caspase-8/RIPK3-DKO-RIPK3-GFP
macrophages (Supplementary Fig. 13a-c). Together, these
results indicate that VSV-induced inflammasome activation is
partially dependent on RIPK3 but independent of TRIF, RIPK1,
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MLKL, FADD and caspase-8 or the kinase activities of RIPK1 or
RIPK3.

Discussion

TLR signalling is one of the most 1mp0rtant s 1g5nall1ng events that
regulate NLRP3 inflammasome activation'4 However, the
critical proteins downstream of TLRs that are involved in NLRP3
priming and activation and their exact role in this process
have not been fully elucidated. Caspase-8 is an important
component of TLR signalling. It is recruited by both TLR3 and
TLR4 to 1nduce apoptosis and regulates NF-«kB activation and
necroptosis’. Recent studies provided conflicting results on its
role in NLRP3 activation31*2, Studies in caspase-8/RIPK3-DKO
macrophages revealed that loss of caspase-8 inhibits NLRP3
prlmmg and activation by both canonical and noncanonical
stimuli®2. Similar results were also reported in FADD/RIPK3-
DKO macrophages . In contrast, studies in caspase-8-cKO DCs
showed that loss of caspase-8 facilitates LPS-induced NLRP3
activation through the RIPK3 necroptotic pathway>!. To address
these conflicting results we assessed the activity and assembly of
the NLRP3 inflammasome during the early and late events of
TLR signalling in cells containing or lacking caspase-8 activity.
We used caspase-1 processing and ASC polymerization assays,
which allow direct readout of inflammasome assembly in
response to TLR signalling in the absence of new protein
synthesis. We particularly avoided the widely used IL-18
secretion assay as a readout of inflaimmasome activation
because this assay requires priming of bone marrow-derived
macrophages (BMDMs) for 4-6h to transcriptionally
induce prolL-1B. This prolonged priming with LPS can
desensitize both the MyD88 and TRIF pathways and can also
lead to transcriptional induction of genes that may affect
inflammasome assembly, which could complicate analysis of the
individual contribution of MyD88, TRIF and other downstream
signalling molecules to the post-translational events that regulate
inflammasome assembly.
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Figure 7 | Caspase-8 scaffolding function is required for inflammasome activation and RIPK3 aggregation. (a) Immunoblot of disuccinimidyl suberate
cross-linked ASC in the NP40-insoluble pellets (upper panel) of stable RIPK3-GFP-reconstituted RIPK3-KO (RIPK3-KO + RIPK3-GFP) or caspase-8-RIPK3-
DKO (Casp8/RIPK3-DKO + RIPK3-GFP) macrophages after stimulation with poly(l:C) for the indicated times (min) in the presence of zZVAD. The lower
panels show immunoblots of RIPK3-GFP, caspase-8 and MLKL in the lysates of the same samples. (b) Confocal images of unstimulated (Un, upper panels)
or poly(l:C) plus zZVAD-stimulated (180 min; lower panels) stable RIPK3-GFP-reconstituted RIPK3-KO (RIPK3-KO + RIPK3-GFP) or caspase-8-RIPK3-DKO
(Casp8/RIPK3-DKO + RIPK3-GFP) macrophages. Scale bar, 10 um. (€) RIPK3 or RIPK3-ARHIM fused to two copies of FKBPF36Y (RIPK3-2xFV or RIPK3-
ARHIM-2xFV, respectively; upper diagram), were ectopically expressed in 293T-CAN cell line, which is stably reconstituted with the human NLRP3
inflammasome components procaspase-1, ASC and NLRP3, or 293T-CA cell line stably reconstituted with only procaspase-1 and ASC. Caspase-1
immunoblots of cell lysates (lower panels) show caspase-1p20 band only in RIPK3-2xFV-transfected 293T-CAN, but not in 293T-CA cells after stimulation
with the oligomerization drug AP20187. Results are representative of at least three independent experiments.

Our results show that signalling downstream of TLRs can
regulate NLRP3 activation via three post-translational pathways
depending on the adaptor molecules engaged (Fig. 10a). The early
pathway is triggered by recruitment of the adaptor molecule
MyD88 to TLRs, which in turn recruits IRAK4 and IRAKI1 to
post-translationally prime NLRP3 (ref. 17). In this early pathway,
caspase-8 or its adaptor molecule FADD does not appear to
play a critical role, as no defect is observed in activation of
NLRP3 by the TLR2 ligand Pam3CSK4 plus ATP in FADD/
caspase-8-deficient macrophages. In contrast, FADD/caspase-8
appear to be critical for an intermediate pathway of post-
translational NLRP3 priming, which is controlled by the adaptor
molecule TRIF downstream of TLR3 and TLR4 (ref. 5).
The intermediate pathway can be clearly detected following
treatment with ATP 30-60min after poly(I:C) stimulation of
TLR3. This pathway also requires RIPK1 but not RIPK3 or the
enzymatic activity of caspase-8. Our assays of ASC

polymerization revealed that inflammasome assembly occurs
normally after stimulation of TLR3 with poly(I:C) in the presence
of the potent pan-caspase inhibitor zVAD, indicating that
caspase-8 plays a scaffolding role rather than a proteolytic
enzyme in NLRP3 activation by extracellular dsRNA plus ATP
and that its enzymatic activity is not important for NLRP3
activation under these conditions.

Physiologically, the MyD88-dependent early pathway
plays a critical role in the rapid activation of the NLRP3
inflammasome by gram-positive bacteria such L.monocytogenes
and possibly others such as S. aureus, which can secrete NLRP3-
activating toxins and stimulate the MyD88 simultaneously'”>3C.
However, our data suggest that the intermediate pathway
might also serve to enhance inflammasome activation in
conditions of co-infections with dsRNA viruses such as
rotaviruses and pathogenic bacteria that produce NLRP3-
activating toxin such as L. monocytogenes, S. aureus and
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Figure 8 | Cytoplasmic dsRNA requires FADD and caspase-8 but not DRP1 for inflammasome activation. Inmunoblots of caspase-1 in the culture
supernatants (Sup) or cell lysates (Lys) of WT or the indicated knockout primary macrophages (a-c,e) or stable RIPK3-GFP-reconstituted RIPK3-KO
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at least three independent experiments.

Clostridium difficile. Indeed, co-infection with rotaviruses and
toxin-producing bacteria are frequently observed in conditions of
acute gastroenteritis?’ 2°. The synergistic effect of dsRNA
produced by rotaviruses on inflammasome activation might be
responsible for the more severe clinical presentation and
inflammation observed in these conditions.

Caspase-8 scaffolding function does not appear to be limited to
post-translational priming of NLRP3 during the intermediate
pathway. Our results indicate that caspase-8 scaffolding

10

function controls yet another distinct late pathway of NLRP3
activation that can only be detected under conditions in
which caspase-8 enzymatic activity is compromised. In this
pathway ASC polymerization is observed 3-4h following
stimulation with poly(I:C) and zZVAD. Importantly, although this
late pathway of inflammasome activation requires a longer
period of stimulation (3-4h), it does not require new gene
expression indicating that it is activated by a post-translational
modification mechanism. Furthermore, this late pathway does
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Figure 9 | VSV-induced NLRP3 activation is partially dependent on RIPK3 but not on DRP1 or RIPK1. (a-h) Immunoblots of caspase-1 (first panels from
top) and mature IL-1B p17 (second panels from top) in the culture supernatants (Sup) of macrophages derived from WT or the indicated knockout mice
after infection with the indicated doses of VSV (plague forming units (p.f.u.)) for 16 h. Immunoblots of procaspase-1, pro-IL-1B and knocked out proteins in
the total cell lysates are shown underneath the supernatants blots. Results are representative of at least three independent experiments.

not require exogenous signal 2 (for example, ATP), indicating
that it can simultaneously provide a priming signal (signal 1) and
an activation signal (signal 2) to facilitate assembly of the
inflammasome.

Our analysis of the late pathway revealed that it is controlled by
both RIPK1 and RIPK3 as loss of either RIPK1 or RIPK3 leads to
inhibition of inflammasome assembly during this phase. As
RIPK1 and RIPK3 are critical mediators of the necroptotic

pathway, it is likely that the late pathway of inflammasome
activation is induced by activation of the RIPK3-MLKL
necroptotic pathway. Consistent with this possibility, the kinase
activity of RIPK3 is critical for activation of NLRP3 by the late
pathway. Like RIPK3-KO macrophages, RIPK3 kinase-dead
macrophages or WT macrophages treated with the RIPK3
inhibitor GSK’872 exhibited a defect in activation of NLRP3 by
the late pathway. Importantly, both RIPK3 kinase-dead and
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Figure 10 | Schematic representations of the TLR and cytoplasmic dsRNA pathways that regulate NLRP3 activation. (a) Three pathways downstream
of TLRs are involved in priming and activation of the NLRP3 inflammasome. The early MyD88-dependent pathway provides a priming signal 1 downstream
of TLR2, whereas the intermediate TRIF-dependent pathway provides a priming signal 1T downstream of TLR3. Both of these pathways require exogenous
signal 2 from purinergic receptors or pore-forming toxins for activation of NLRP3. Signal 2 is required to induce potassium efflux. The late TRIF-dependent
pathway can provide both signal 1 and an endogenous signal 2 by recruiting RIPK3 and MLKL when caspase-8 is inhibited. (b) In WT macrophages, FADD/
caspase-8 complex is required to remove RIPK3 inhibition of the cytoplasmic dsRNA sensor. In RIPK3-deficient macrophages such as Casp8/RIPK3-DKO
macrophages, caspase-8 is not required for activation of NLRP3 by dsRNA sensor.

RIPK3-KO macrophages were unable to activate NLRP3 through
the late pathway in the presence or absence of signal 2 (ATP),
suggesting that the kinase activity of RIPK3 is critical for
providing both signal 1 and signal 2 in this pathway. As the late
pathway can be activated by poly(I:C) plus zVAD without the
need for stimulation of the P2X7 receptor with ATP, it follows
that the RIPK3 kinase activity somehow can induce potassium
efflux (signal 2) through the cell membrane, an event critical for
NLRP3 activation!®?>*3, How RIPK3 can induce potassium
efflux and also provide a priming signal (signal 1) in the late
pathway is currently unknown, but it is likely that
phosphorylation of MLKL by RIPK3 can induce potassium
efflux by stimulating the pore-forming activity of MLKL®,
Consistent with this possibility, genetic deletion of MLKL resulted
in inhibition of NLRP3 inflammasome activation by the late
pathway.

RIPK3-GFP expressing macrophages showed clear RIPK3
aggregation into speck-like structures after stimulation with
extracellular dsRNA only when caspase-8 activity is
compromised, but not in the absence of caspase-8, indicating
that the physical presence of inactive caspase-8 is a critical step in
the recruitment and oligomerization of RIPK3 by TLR3
signalling. The physical presence of inactive caspase-8 was also
required for assembly of the inflammasome in these cells.
Intriguingly, RIPK3 aggregation by the RIPK3 kinase inhibitor
GSK’872 was also dependent on the physical presence of caspase-
8, but caspase-8 inhibition was not required (Supplementary
Fig. 6). Indeed, this inhibitor recruits caspase-8 to the inhibited
RIPK3 by stimulating binding of RIPK3 to RIPK1 and FADD™,
This certainly raises the possibility that the scaffolding function of
caspase-8 together with its catalytic activity is also important
for RIPK3-induced apoptosis®®>. Our observations suggest that
caspase-8 physically nucleates RIPK3 oligomerization in response

12

to the RIPK3 kinase inhibitor GSK’872, or in response to TLR3
signalling when its caspase activity is compromised.

LPS stimulation has been shown to activate the NLRP3
inflammasome in caspase-8-cKO DCs in the absence of
exogenous signal 2 (ATP) in a RIPK1-RIPK3-MLKL-dependent
manner’!. Similarly LPS stimulation combined with inhibitors of
apoptosis proteins (IAP) inhibition by SMAC mimetics, IAP
deletion or A20 deletion can all lead to RIPK3-dependent
inflammasome activation in the absence of exogenous signal 2
(refs 44-46). LPS plus IAP inhibition appears to trigger two
RIPK3-dependent inflaimmasome activation pathways in the
absence of exogenous signal 2; one is dependent on MLKL
when caspase-8 is inhibited and the other is dependent on
caspase-8 activity when MLKL is deleted®®. Our findings
demonstrate that dsRNA can activate NLRP3 without
exogenous signal 2 only in the presence of inhibited caspase-8
through the TRIF-RIP1-RIP3-dependent late pathway. This late
pathway is dependent on MLKL and might be similar to the
pathway that is activated by LPS and IAP inhibitors when
caspase-8 is inhibited. In addition, this pathway might also be
similar to the pathway activated bz LPS in caspase-8-cKO DCs,
which is also dependent on MLKL?!. As the scaffolding function
of caspase-8 is required for aggregation of RIPK3
and activation of NLRP3 by poly(I:C) and zVAD, it is likely
that it is also required for activation of the inflammasome by LPS
and IAP inhibitors when caspase-8 is inhibited, and by LPS in
caspase-8-cKO DCs. As Cre-Lox recombination does not totally
eliminate caspase-8 expression in caspase-8-cKO DCs314 it is
likely that the remaining caspase-8 has very low protease activity
because of binding to cellular FLICE-like inhibitory protein, but is
sufficient to provide a scaffolding function for the assembly of the
RIPK1-RIPK3-FADD-caspase-8 complex.
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Caspase-8 is also important for NLRP3 inflammasome
activation by cytoplasmic dsRNA in WT macrophages but not
in RIPK3-deficient macrophages. This suggests that RIPK3
blocks inflammasome activation at the level of the cytoplasmic
dsRNA sensor (Fig. 10b). Caspase-8 activity might be required
to relieve this inhibition by cleaving RIPK3 or another regulator
of RIPK3 (ref. 47). Cytoplasmic dsRNA can activate the
inflammasome independent of TRIF**4849  RIPK1 or RIPK3,
or their kinase activities (Fig. 8). In fact, inhibition of RIPK3
kinase activity with GSK’872 or mutating the kinase domain as in
the RIPK3-KD macrophages enhances cytoplasmic dsRNA-
induced inflammasome activation (Fig. 8c,d). As both GSK’872
and mutation of the kinase domain of RIPK3 enhance caspase-8
activation®>>? likely by enhancing the oligomerization of RIPK3
(Fig. 7), these observations suggest that sensing of cytoplasmic
dsRNA by their putative sensor leads to assembly of a FADD-
caspase-8 complex that regulates RIPK3 association with, or
inhibition of, this sensor. The future identification of this
cytoplasmic dsRNA sensor should shed more light on how it
regulates NLRP3 activation.

Our findings are in conflict with a recent report proposing that
the mitochondria fission regulator DRP1 is required for NLRP3
inflammasome activation by cytoplasmic dsRNA and RNA
viruses??. Our results show clearly that DRP1-KO macrophages
have no defect in inflammasome activation in response to TLR3
stimulation, cytoplasmic dsRNA or VSV. Moreover, our findings
suggest that VSV-induced NLRP3 activation is only partially
dependent on RIPK3 suggesting that VSV can utilize an
additional pathway to activate the inflammasome. This conflict
is likely due to the use of different systems. Whereas in this study
we used macrophages from conditional DRP1-KO mice, the
previous study used siRNA-knockdown experiments.

In conclusion, our results provide a detailed picture of the
multiple signalling pathways activated by foreign RNA to
control NLRP3 activation and the central roles played by the
FADD/caspase-8, RIPK3 and MLKL complexes in these path-
ways. Future investigation of the mechanism of NLRP3 activation
by extracellular and intracellular dsRNA should shed more light
on these intricate pathways.

Methods

Antibodies and reagents. Antibodies against caspase-1, NLRP3 and ASC were
made in house and were described previously!4>>1, Anti-DRP1 antibody
(Catalogue No. 611738) and anti-RIPK1 clone 38 (Catalogue No. 610459) were
from BD biosciences. Anti-caspase-8 1G12 was from Enzo (Catalogue No.
ALX-804-447-C100). Anti-MLKL clone 3H1 was from EMD Millipore (Catalogue
No. MABC604). Anti-IL-1B was from GeneTex (Catalogue No. GTX74034).
Anti-RIPK3 antibody (Catalogue No. R4277), ATP and actinomycin

D were obtained from Sigma. Ultrapure LPS, Pam3CSK4 and poly(I:C) were
obtained from InvivoGen. zZVAD was obtained from ApexBio. GSK’872 was
obtained from Aobious. AP20187 was obtained from Clontech. CytoTox96
LDH-release kit was from Promega. All antibodies were used at 1/1,000-1/2,000
dilutions for western blot analyses.

Mice. C57BL/6, Trif ~/~ and Myd88 '~ mice were obtained from The
Jackson Laboratory (Bar Harbor, ME) and were bred at Thomas Jefferson
University. Nlrp3 =/~ (refs 16,52,53), Ripk3 =/~ (ref. 54), Casp8 '~ /Ripk3~/~
(refs 23,24), Casp8 "/ [Ripk1 =/~ /Ripk3 '~ (vefs 10-12), Fadd~'~/

Ripk3 =/~ RipkIK#A/KI5A (RIPK1-KD)!, Ripk3K°IA/KSIA (RIPK3-KD)!1,
MIkI=/= (rvef. 36), Fadd =/~ /Mlkl~/~ and Drp "/l LysmCre*/~ were all on
C57BL/6 background. Mouse strains were maintained in specific pathogen-free
conditions and the animal protocols were carried out in accordance with the
guidelines set forth by Institutional Animal Care and Use Committee. Mice

of both genders (age 1-6 months) were used for harvesting bone marrow-derived
macrophages.

Cell culture and treatments. Bone marrow-derived cells were harvested from the
femurs of WT (C57BL/6) and knockout mice and differentiated into BMDMs by
culturing in DMEM (GIBCO) medium supplemented with 10% FBS, 10 mM
HEPES pH 7.0 (Invitrogen), 100 Uml ~ ! penicillin and streptomycin (complete
DMEM) and 20% L1929 supernatants in 10 cm dishes at 37 °C with 5% CO, for 5-6 days.

For the various treatments, BMDMs were seeded in six-well plates at a density
of 1 x 10° cells per well overnight. The next day BMDMs were pre-stimulated with
the TLR ligands Pam3CSK4 (1 pgml ™~ D, poly(I:C) (1 pgml~ Iy or ultrapure LPS
(500 ngml — 1) for various periods of times followed by stimulation with ATP
(5mM) for 45min in OPTI-MEMI medium. In some experiments BMDMs were
pre-treated with zVAD (30 pM) or actinomycin D (0.5 pgml ~ 1) before
stimulation with the TLR ligands.

For transfection experiments, BMDMs were seeded in six-well plates at a
density of 1 x 10%cells per well overnight in DMEM medium. The next day, the
culture medium was removed and replaced with 1 ml of OPTI-MEMI medium per
well. Cells were primed with ultrapure LPS (500 ng ml ~1) or left unprimed for 4h
and then transfected with poly(I:C) (2 pugml 1) or poly(dA:dT) (1 pgml ~!) using
Lipofectamine 2000 (7 plml ™~ 1y as per the manufacturer’s protocol (Invitrogen).

Generation of immortalized macrophage cell lines. Immortalized caspase-8/
RIPK3-DKO and RIPK3-KO BMDMs and fetal liver-derived RIPK1-KO macro-
phages were generated by transformation with J2-CRE retrovirus (J2-CRE cell line
was a kind gift from Dr. Howard Young, National Institutes of Health) as described
before> with minor modifications and grown in complete DMEM medium
without L929 supernatants at 37 °C with 5% CO,. To generate immortalized
macrophage cell lines, 1-3 x 10° primary bone marrow- or fetal liver-derived cells
were seeded in 60-mm dishes for 48 h in complete DMEM medium supplemented
with 20% L929 supernatants. The culture medium was removed and replaced with
5ml virus infection mix made of complete DMEM medium (2 ml), J2-CRE cell
supernatant (2 ml 48 h culture supernatant), 8 pgml ~ 1 Polybrene (Sigma) and 20%
1929 supernatants (1 ml). After 24 h at 37 °C, the virus infection mix was replaced
with complete DMEM medium supplemented with 20% L929 supernatants and the
cells were allowed to grow for 7 days. Cells were then maintained in complete
DMEM medium.

Generation of stable RIPK3-GFP cell lines. Stable RIPK3-KO and caspase-8/
RIPK3-DKO immortalized macrophages expressing WT murine RIPK3-GFP were
generated by retroviral transduction using a pMSCVpuro-RIPK3-GFP retroviral
vector. This vector was constructed by excising the RIPK3-GFP insert from
pEGFP-N1-RIPK3-GFP plasmid®® (a gift from Francis Chan; Addgene Plasmid
#41382) with BglII-Hpal restriction enzymes followed by subcloning it into the
same sites of pMSCVpuro vector (Clontech).

Caspase-1 immunoblotting. The culture supernatants and cells were collected
after each stimulation and analysed for caspase-1 activation by immunoblotting as
described previously®®. Briefly, the culture supernatants were precipitated by the
addition of an equal volume of methanol and 0.25 volumes of chloroform. The
resulting protein pellets were resuspended in Laemmli buffer, and then fractionated
by 12.5% SDS-PAGE followed by electroblotting onto nitrocellulose membranes.
Blots were probed with a rabbit polyclonal antibody to mouse caspase-1. For
analysis of procaspase-1 in cell pellets, total cell lysates were mixed with SDS
sample bulffer, fractionated on 12.5% SDS-PAGE and then immunoblotted as
described above. Images have been cropped for presentation. Full size images are
presented in Supplementary Figs. 14-52.

LDH Release assay. Pyroptosis and necroptosis were quantitated by assaying the
activity of LDH released into cell culture supernatants after various treatments
using the CytoTox96 LDH release kit (Promega) according to the manufacturer’s
protocol. The LDH activity in the culture supernatant was expressed as a per-
centage of total LDH in the cell lysate.

Infection of macrophages with Listeria. These experiments were performed
essentially as described before® with minor modifications. WT Listeria
monocytogenes (10403S) were grown to logarithmic phase in brain heart infusion
medium at 37 °C with continuous shaking at 250 r.p.m. On the day of infection, a
1/10 dilution of the overnight culture was prepared in fresh brain heart infusion
medium and allowed to grow at 37 °C with shaking to about A 600 = 0.5, which
corresponds to ~ 109 colony-forming units per ml. Bacteria were pelleted at
5,000 r.p.m. and the bacterial pellet was diluted to the desired concentration in
OPTI-MEM and used to infect macrophages at multiplicity of infection of 100
following priming for different lengths of time with poly(I:C) (1 pgml~1). After
45 min of infection at 37 °C, culture supernatants and cell pellets were collected and
assayed as indicated.

Viral infection of macrophages. BMDMs were seeded in six-well plates at a
density of 1x10° cells per well overnight. The next day, BMDMs were pre-stimu-
lated with Pam3CSK4 (1 pgml ~!) for 3h followed by infection with different
doses of VSV-GFP (Indiana strain) in OPTI-MEMI medium for an additional 16 h.
Active caspase-1 and IL-1P p17 were assayed in the culture supernatants of infected
cells by immunoblotting as described above.
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ASC polymerization assay. ASC polymerization was assayed as described before
with minor modifications?>33, After stimulation of cells in OPTI-MEMI in six-well
plates, the culture supernatants were collected and used for immunoblot analyses of
secreted caspase-1 p20 as described above. Cells were lysed in 0.5 ml buffer
containing 20 mM Hepes-KOH, pH7.5, 150 mM KCl, 1% NP40, 0.1 mM
phenylmethylsulphonyl fluoride and protease inhibitor cocktail on ice. The cell
lysates were centrifuged at 6,000 r.p.m. at 4 °C for 10 min. The NP40-soluble
supernatants were removed and the NP40-insloluble pellets were washed 1 x in
the lysis buffer and then resuspended in 50 pl of the same buffer. The resuspended
pellets were cross-linked with fresh disuccinimidyl suberate (2 mM) for 30 min as
described before?>33, and then mixed with 50 ul 2 x SDS sample buffer, boiled and
fractionated on 12% SDS-polyacrylamide gel followed by immunobloting with
anti-mouse ASC antibody.

Confocal microscopy. Cells were grown on coverslips in 12-well plates. After
various treatments, cells were fixed with 2% formaldehyde and stained with
Hoechst 33342 (Invitrogen), The coverslips were mounted on slides and then
examined using a confocal laser microscope (Nikon C1 plus, Bioimaging Shared
Resource of the Kimmel Cancer Center (NCI 5 P30 CA-56036)).

Statistics. Statistical analyses were made with Student’s ¢-test.
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