457 research outputs found

    Reconocimiento NIIF: el capital intelectual en el contexto de las instituciones de educación superior

    Get PDF
    With the arrival of globalization new concepts emerged, one of them is intellectual capital, defined as an intangible asset that is responsible for adding value to the company through criteria such as research, innovation and development, through knowledge that are acquired in the activities of a company or association. On the other hand, being a source of intangibles, universities are considered as social enterprises, especially because they make up a set of information, services, goods, among others, in search of greater community benefits. For this reason, the scope of this research focuses on contributing to a process of recognition of intellectual capital under IFRS regulations within the higher education institutions of the city of Villavicencio.   For the purposes of this research, information collection instruments, characterization sheet, interviews and surveys applied to the analysis unit were incorporated, all with the purpose of achieving a harmonious development around the problem posed, mainly in search of integration. of accounting concepts with the development of intellectual capital in university training spaces.Con la llegada de la globalización surgieron nuevos conceptos, uno de ellos es el capital intelectual, definido como un activo intangible que se encarga de aportar valor a la empresa por medio de criterios como la investigación, la innovación y el desarrollo, a través de conocimientos que se van adquiriendo en las actividades propias de una compañía o asociación. De otra parte, siendo una fuente de intangibles, las universidades son consideradas como empresas sociales, especialmente porque conforman un conjunto de información, servicios, bienes, entre otros, en procura de mayores beneficios comunitarios. Por tal motivo, el alcance de esta investigación se centra en contribuir con un proceso de reconocimiento del capital intelectual bajo la normativa NIIF dentro de las instituciones de educación superior de la ciudad de Villavicencio.   Para efectos de esta investigación, se incorporaron instrumentos de recolección de información, ficha de caracterización, entrevistas y encuestas aplicadas a la unidad de análisis, todo esto con la finalidad de lograr un desarrollo armónico en torno al problema planteado, principalmente en procura de la integración de conceptos contables con el desarrollo del capital intelectual en los espacios de formación universitaria

    Snooping Around: Observation Planning for the Signals of Opportunity P-Band Investigation (SNOOPI)

    Get PDF
    Launching October 2022, the SigNals Of Opportunity P-band Investigation (SNOOPI) is a 6U CubeSat dedicated to demonstrating spaceborne remote sensing of root zone soil moisture and snow water equivalent using signals of opportunity. P-band (240-500 MHz) frequencies are required to penetrate dense vegetation or snow and into the top 200 cm of soil, but this band is heavily subscribed. Rather than transmitting its own signal SNOOPI will observe reflected signals from the U.S. Navy’s Mobile User Objective System satellites. This makes planning observations challenging. The point of reflection is a function of both the transmitter and receiver satellite positions as well as terrain. The direct signal must be observed simultaneously on the same antenna pattern with sufficient gain. Ionospheric delay must also be accounted for. To satisfy these requirements and maintain a cadence of one observation per day, the SNOOPI science operations center at Purdue University has developed custom software for scheduling activities onboard the satellite. The software is highly automated, involving the user only in the definition of observation targets, priorities, and giving final approval to the proposed schedule. Orbit, attitude, power, communication, memory, and observation constraints are handled by a combination of linear programming and pattern search optimization methods. The purpose of this paper is to describe the challenges of scheduling observations for a signals of opportunity mission and illustrate how they were solved for SNOOPI

    Similarities between the lipid proile of Mexican patients with lupus and the general population

    Get PDF
    Premature cardiovascular events have been observed in systemic lupus erythematosus (SLE) patients, but the reason for this accelerated process is still debatable; although traditional risk factors are more prevalent in such patients than in the general population, the do not seem to fully explain that enhanced risk. One of the most important conditions is a proatherogenic lipid proile. There is not enough data about it in Mexican SLE patients. Objective: To establish the differences in the lipid proiles between Mexican patients with SLE and the general population. Material and methods: Observational, transversal, descriptive and comparative study, between SLE patients and age-sex-matched healthy volunteers. We performed a full lipid proile (by spectrophotometry) 14 hours of fast. The results obtained were analyzed by the statistical program SPSS® Statistics version 17. Results: We studied the full lipid proiles of 138 subjects, 69 with a diagnosis of SLE and 69 agesex- matched healthy volunteers; 95.7% were females and 4.3% males. Average age was 30 years; average body mass index (BMI) 25.96 ± 5.96 kg/m² in SLE patients and 26.72 ± 4.36 kg/m² in the control group (p = 0.396). Average of total cholesterol 156 mg/dl in the SLE patients and 169.4 mg/dl in the control group (p =0.028); average of low density lipoprotein (LDL) cholesterol 85.27 mg/dl in the SLE patients and 97.57 mg/dl in the control group (p = 0.023). Conclusions: We did not ind statistical differences in the lipid proiles among patients and healthy volunteers, which could explain increased cardiovascular morbidity and mortality observed in SLE patient

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Visualization and 3D Reconstruction of Flame Cells of Taenia solium (Cestoda)

    Get PDF
    BACKGROUND: Flame cells are the terminal cells of protonephridial systems, which are part of the excretory systems of invertebrates. Although the knowledge of their biological role is incomplete, there is a consensus that these cells perform excretion/secretion activities. It has been suggested that the flame cells participate in the maintenance of the osmotic environment that the cestodes require to live inside their hosts. In live Platyhelminthes, by light microscopy, the cells appear beating their flames rapidly and, at the ultrastructural, the cells have a large body enclosing a tuft of cilia. Few studies have been performed to define the localization of the cytoskeletal proteins of these cells, and it is unclear how these proteins are involved in cell function. METHODOLOGY/PRINCIPAL FINDINGS: Parasites of two different developmental stages of T. solium were used: cysticerci recovered from naturally infected pigs and intestinal adults obtained from immunosuppressed and experimentally infected golden hamsters. Hamsters were fed viable cysticerci to recover adult parasites after one month of infection. In the present studies focusing on flame cells of cysticerci tissues was performed. Using several methods such as video, confocal and electron microscopy, in addition to computational analysis for reconstruction and modeling, we have provided a 3D visual rendition of the cytoskeletal architecture of Taenia solium flame cells. CONCLUSIONS/SIGNIFICANCE: We consider that visual representations of cells open a new way for understanding the role of these cells in the excretory systems of Platyhelminths. After reconstruction, the observation of high resolution 3D images allowed for virtual observation of the interior composition of cells. A combination of microscopic images, computational reconstructions and 3D modeling of cells appears to be useful for inferring the cellular dynamics of the flame cell cytoskeleton

    Calbindin-D32k Is Localized to a Subpopulation of Neurons in the Nervous System of the Sea Cucumber Holothuria glaberrima (Echinodermata)

    Get PDF
    Members of the calbindin subfamily serve as markers of subpopulations of neurons within the vertebrate nervous system. Although markers of these proteins are widely available and used, their application to invertebrate nervous systems has been very limited. In this study we investigated the presence and distribution of members of the calbindin subfamily in the sea cucumber Holothuria glaberrima (Selenka, 1867). Immunohistological experiments with antibodies made against rat calbindin 1, parvalbumin, and calbindin 2, showed that these antibodies labeled cells and fibers within the nervous system of H. glaberrima. Most of the cells and fibers were co-labeled with the neural-specific marker RN1, showing their neural specificity. These were distributed throughout all of the nervous structures, including the connective tissue plexi of the body wall and podia. Bioinformatics analyses of the possible antigen recognized by these markers showed that a calbindin 2-like protein present in the sea urchin Strongylocentrotus purpuratus, corresponded to the calbindin-D32k previously identified in other invertebrates. Western blots with anti-calbindin 1 and anti-parvalbumin showed that these markers recognized an antigen of approximately 32 kDa in homogenates of radial nerve cords of H. glaberrima and Lytechinus variegatus. Furthermore, immunoreactivity with anti-calbindin 1 and anti-parvalbumin was obtained to a fragment of calbindin-D32k of H. glaberrima. Our findings suggest that calbindin-D32k is present in invertebrates and its sequence is more similar to the vertebrate calbindin 2 than to calbindin 1. Thus, characterization of calbindin-D32k in echinoderms provides an important view of the evolution of this protein family and represents a valuable marker to study the nervous system of invertebrates
    corecore