265 research outputs found

    The Bose–Hubbard model with squeezed dissipation

    Get PDF
    The stationary properties of the Bose–Hubbard model under squeezed dissipation are investigated. The dissipative model does not possess aU (1) symmetry but conserves parity. We find that 〈a j 〉 = 0 always holds, so no symmetry breaking occurs. Without the onsite repulsion, the linear case is known to be critical. At the critical point the system freezes to an EPR state with infinite two mode entanglement. We show here that the correlations are rapidly destroyed whenever the repulsion is switched on. As we increase the latter, the system approaches a thermal state with an effective temperature defined in terms of the squeezing parameter in the dissipators. We characterize this transition by means of a Gutzwiller ansatz and the Gaussian Hartree–Fock–Bogoliubov approximation

    Structural Stability of the PsbQ Protein of Higher Plant Photosystem II

    Get PDF
    We have characterized the stability and folding behavior of the isolated extrinsic PsbQ protein of photosystem II (PSII) from a higher plant, Spinacia oleracea, using intrinsic protein fluorescence emission and near- and far-UV circular dichroism (CD) spectroscopy in combination with differential scanning calorimetry (DSC). Experimental results reveal that both chemical denaturation using guanidine hydrochloride (GdnHCl) and thermal unfolding of PsbQ proceed as a two-state reversible process. The denaturation free-energy changes (GD) at 20 C extrapolated from GdnHCl (4.0 ± 0.6 kcal mol-1) or thermal unfolding (4.4 ± 0.8 kcal mol-1) are very close. Moreover, the far-UV CD spectra of the denatured PsbQ registered at 90 C in the absence and presence of 6.0 M GdnHCl superimpose, leading us to conclude that both denatured states of PsbQ are structurally and energetically similar. The thermal unfolding of PsbQ has been also characterized by CD and DSC over a wide pH range. The stability of PsbQ is at its maximum at pH comprised between 5 and 8, being wider than the optimal pH for oxygen evolution in the lumen of thylakoid membranes. In addition, no significant structural changes were detected in PsbQ between 50 and 55 C in the pH range of 3-8, suggesting that PsbQ behaves as a soluble and stable particle in the lumen when it detaches from PSII under physiological stress conditions such as high temperature (45-50 C) or low pH (<5.0). Sedimentation experiments showed that, in solution at 20 C, the PsbQ protein is a monomer with an elongated shape.Spanish Minitry of Science and Technology (PB1998-0480 and AGL2004-00045)This work was funded by the Spanish Ministry of Science and Technology (project references PB1998-0480 and AGL2003-0045). M.B. holds a fellowship from the Spanish Ministry of Science and Technology.Peer reviewe

    A 17-residue sequence from the matrix metalloproteinase-9 (MMP-9) hemopexin domain binds α4β1 integrin and inhibits MMP-9-induced functions in chronic lymphocytic leukemia B cells

    Get PDF
    13 páginas, 7 figuras, 2 tablas -- PAGS nros. 27601-27613We previously showed that pro-matrix metalloproteinase-9 (proMMP-9) binds to B chronic lymphocytic leukemia (B-CLL) cells and contributes to B-CLL progression by regulating cell migration and survival. Induction of cell survival involves a non-proteolytic mechanism and the proMMP-9 hemopexin domain (PEX9). To help design specific inhibitors of proMMP-9-cell binding, we have now characterized B-CLL cell interaction with the isolated PEX9. B-CLL cells bound soluble and immobilized GST-PEX9, but not GST, and binding was mediated by α4β1 integrin. The ability to recognize PEX9 was observed in all 20 primary samples studied irrespective of their clinical stage or prognostic marker phenotype. By preparing truncated forms of GST-PEX9 containing structural blades B1B2 or B3B4, we have identified B3B4 as the primary α4β1 integrin-interacting region within PEX9. Overlapping synthetic peptides spanning B3B4 were then tested in functional assays. Peptide P3 (FPGVPLDTHDVFQYREKAYFC), a sequence present in B4 or smaller versions of this sequence (peptides P3a/P3b), inhibited B-CLL cell adhesion to GST-PEX9 or proMMP-9, with IC50 values of 138 and 279 μm, respectively. Mutating the two aspartate residues to alanine rendered the peptides inactive. An anti-P3 antibody also inhibited adhesion to GST-PEX9 and proMMP-9. GST-PEX9, GST-B3B4, and P3/P3a/P3b peptides inhibited B-CLL cell transendothelial migration, whereas the mutated peptide did not. B-CLL cell incubation with GST-PEX9 induced intracellular survival signals, namely Lyn phosphorylation and Mcl-1 up-regulation, and this was also prevented by the P3 peptides. The P3 sequence may, therefore, constitute an excellent target to prevent proMMP-9 contribution to B-CLL pathogenesisThis work was supported by Grants SAF2009–07035 and RTICC RD06/0020/0011 (to A. G.-P.) and RTICC RD06/0020/0080 (to M. J. T.) from the Ministerio de Ciencia e Innovación, Spain, and by a grant from the Fundación Puerta de Hierro (to J. A. G. M.)Peer reviewe

    The geomorphic dimension global change : risks and opportunities

    Get PDF
    Fil: Hurtado, Martín Adolfo. Instituto de Geomorfología y Suelos (IGS). Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Forte, Luis M.. Instituto de Geomorfología y Suelos (IGS). Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Bruschi, Viola María. Departamento de Ciencias de la Tierra y Física de la Materia Condensada. Universidad de Cantabria; EspañaFil: Bonachea, Jaime. Departamento de Ciencias de la Tierra y Física de la Materia Condensada. Universidad de Cantabria; EspañaFil: Rivas, Victoria. DGUOT. Universidad de Cantabria. Santander; EspañaFil: Gómez Arozamena, José. DCMQ. Universidad de Cantabria. Santander; EspañaFil: Dantas Ferreira, Marcilene. Departamento de Engenharia Civil. Universidade Federal de SÆo Carlos. SÆo Paulo; BrasilFil: Remondo, Juan. Departamento de Ciencias de la Tierra y Física de la Materia Condensada. Universidad de Cantabria; EspañaFil: González, A.. Departamento de Ciencias de la Tierra y Física de la Materia Condensada. Universidad de Cantabria; EspañaFil: Díaz de Terán, J.R.. Departamento de Ciencias de la Tierra y Física de la Materia Condensada. Universidad de Cantabria; EspañaFil: Salas, L.. Departamento de Ciencias de la Tierra y Física de la Materia Condensada. Universidad de Cantabria; EspañaFil: Cendrero, Antonio. Instituto de Geomorfología y Suelos (IGS). Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; Argentin

    From structure to function – a family portrait of plant subtilases

    Get PDF
    Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.Instituto de Fisiología Vegeta

    FaMYB123 interacts with FabHLH3 to regulate the late steps of anthocyanin and flavonol biosynthesis during ripening.

    Get PDF
    In this work, we identified and functionally characterized the strawberry (Fragaria × ananassa) R2R3 MYB transcription factor FaMYB123. As in most genes associated with organoleptic properties of ripe fruit, FaMYB123 expression is ripening-related, receptacle-specific, and antagonistically regulated by ABA and auxin. Knockdown of FaMYB123 expression by RNAi in ripe strawberry fruit receptacles downregulated the expression of enzymes involved in the late steps of anthocyanin/flavonoid biosynthesis. Transgenic fruits showed a parallel decrease in the contents of total anthocyanin and flavonoid, especially malonyl derivatives of pelargonidin and cyanidins. The decrease was concomitant with accumulation of proanthocyanin, propelargonidins, and other condensed tannins associated mainly with green receptacles. Potential coregulation between FaMYB123 and FaMYB10, which may act on different sets of genes for the enzymes involved in anthocyanin production, was explored. FaMYB123 and FabHLH3 were found to interact and to be involved in the transcriptional activation of FaMT1, a gene responsible for the malonylation of anthocyanin components during ripening. Taken together, these results demonstrate that FaMYB123 regulates the late steps of the flavonoid pathway in a specific manner. In this study, a new function for an R2R3 MYB transcription factor, regulating the expression of a gene that encodes a malonyltransferase, has been elucidated.This work was funded by the Spanish Ministerio de Ciencia e Innovacion (AGL2014-55784-C2-2-R and AGL2017-86531-C2-2-R). FJMR is supported by a ‘Margarita Salas’ post-doctoral fellowship (UCOR02MS) from the University of Cordoba (Requalification of the Spanish university system) from the Ministry of Universities financed by the European Union (NexGenerationEU). FJMH is supported by a ‘Juan de la Cierva-Incorporacion’ fellowship (IJC2020- 045526-I), funded by MCIN/AEI/10.13039/501100011033 and the European Union ‘NextGenerationEU’/PRTR. AR-F and SA are on the European Union’s Horizon 2020 Research and Innovation Program, Project PlantaSYST (SGA-CSA No. 739582 under FPA No. 664620). The authors thank Dr. Gema Garc ıa from the Microscopy Unit of UCAIB-IMIBIC for technical help with the microscope. Funding for open access charge: University of Cordoba/CBUA.S

    Amyloid β-but not Tau-induced neurotoxicity is suppressed by Manuka honey via HSP-16.2 and SKN-1/Nrf2 pathways in an in vivo model of Alzheimer’s disease

    Get PDF
    Alzheimer’s is a chronic degenerative disease of the central nervous system considered the leading cause of dementia in the world. It is characterized by two etiopathological events related to oxidative stress: the aggregation of β-amyloid peptide and the formation of neurofibrillary tangles of hyperphosphorylated Tau protein in the brain. The incidence of this disease increases with age and has been associated with inadequate lifestyles. Some natural compounds have been shown to improve the hallmarks of the disease. However, despite its potential, there is no scientific evidence about Manuka honey (MH) in this regard. In the present work we evaluated the effect of MH on the toxicity induced by Aβ aggregation and Tau in a Caenorhabditis elegans model. Our results demonstrated that MH was able to improve indicators of oxidative stress and delayed Aβ-induced paralysis in the AD model CL4176 through HSP-16.2 and SKN-1/ NRF2 pathways. Nevertheless, its sugar content impaired the indicators of locomotion (an indicator of tau neurotoxicity) in both the transgenic strain BR5706 and in the wild-type N2 worms.MCIN/AEI FPU2017/04358FSE "El FSE invierte en tu futuro" FPU2018/05301JdC-I post-doctoral contract - NextGenerationEU IJC2020-043910-IFEDER/Junta de Andalucia-Consejeria de Economia y Conocimiento B-AGR-193-UGR1

    A humanized mouse model of HPV-associated pathology driven by E7 expression

    Get PDF
    Human papillomavirus (HPV) is the causative agent of human cervical cancer and has been associated with oropharyngeal squamous cell carcinoma development. Although prophylactic vaccines have been developed, there is a need to develop new targeted therapies for individuals affected with malignant infected lesions in these locations, which must be tested in appropriate models. Cutaneous beta HPV types appear to be involved in skin carcinogenesis. Virus oncogenicity is partly achieved by inactivation of retinoblastoma protein family members by the viral E7 gene. Here we show that the E7 protein of cutaneous beta HPV5 binds pRb and promotes its degradation. In addition, we described an in vivo model of HPV-associated disease in which artificial human skin prepared using primary keratinocytes engineered to express the E7 protein is engrafted onto nude mice. Expression of E7 in the transplants was stably maintained for up to 6 months, inducing the appearance of lesions that, in the case of HPV16 E7, histologically resembled human anogenital lesions caused by oncogenic HPVs. Moreover, it was confirmed through biomarker expression analysis via immunodetection and/or quantitative PCR from mRNA and miRNA that the 16E7-modified engrafted skin shares molecular features with human HPV-associated pretumoral and tumoral lesions. Finally, our findings indicate a decrease of the in vitro capacity of HPV5 E7 to reduce pRb levels in vivo, possibly explaining the phenotypical differences when compared with 16E7-grafts. Our model seems to be a valuable platform for basic research into HPV oncogenesis and preclinical testing of HPV-associated antitumor therapies.This work was supported by Comunidad Autonoma de Madrid (Oncocycle S2006/BIO-0232), by Ministerio de Ciencia e Innovacion (ISCIII-RETIC RD06/0020 and SAF2008-00121), and by Fundación Sandra Ibarra. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Expert consensus on the use of systemic glucocorticoids for managing eosinophil-related diseases

    Get PDF
    Eosinophil-related diseases represent a group of pathologic conditions with highly heterogeneous clinical presentation and symptoms ranging from mild to critical. Both systemic and localized forms of disease are typically treated with glucocorticoids. The approval of novel biologic therapies targeting the interleukin-5 pathway can help reduce the use of systemic glucocorticoids (SGC) in eosinophilic diseases and reduce the risk of SGC-related adverse effects (AEs). In this article, a panel of experts from different medical specialties reviewed current evidence on the use of SGC in two systemic eosinophilic diseases: Eosinophilic Granulomatosis with PolyAngiitis (EGPA) and HyperEosinophilic Syndrome (HES); and in two single-organ (respiratory) eosinophilic diseases: Chronic RhinoSinusitis with Nasal Polyps (CRSwNP) and Severe Asthma with Eosinophil Phenotype (SA-EP), and contrasted it with their experience in clinical practice. Using nominal group technique, they reached consensus on key aspects related to the dose and tapering of SGC as well as on the initiation of biologics as SGC-sparing agents. Early treatment with biologics could help prevent AEs associated with medium and long-term use of SGC.Funding: The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The author(s) declare that GSK funded the medical writing support for this manuscript. Acknowledgments: We would like to thank Mónica Hoyos (medical writer) on behalf of Springer Healthcare Communications. This medical writing assistance was funded by GSK and facilitated by Springer Healthcare
    corecore