20 research outputs found

    Three-Dimensional Printing of Photoresponsive Biomaterials for Control of Bacterial Microenvironments

    No full text
    Advances in microscopic three-dimensional (μ3D) printing provide a means to microfabricate an almost limitless range of arbitrary geometries, offering new opportunities to rapidly prototype complex architectures for microfluidic and cellular applications. Such 3D lithographic capabilities present a tantalizing prospect for engineering micromechanical components, for example, pumps and valves, for cellular environments composed of smart materials whose size, shape, permeability, stiffness, and other attributes might be modified in real time to precisely manipulate ultralow-volume samples. Unfortunately, most materials produced using μ3D printing are synthetic polymers that are inert to biologically tolerated chemical and light-based triggers and provide low compatibility as materials for cell culture and encapsulation applications. We previously demonstrated feasibility for μ3D printing environmentally sensitive, microstructured protein hydrogels that undergo volume changes in response to pH, ionic strength, and thermal triggers, cues that may be incompatible with sensitive chemical and biological systems. Here, we report the systematic investigation of photoillumination as a minimally invasive and remotely applied means to trigger morphological change in protein-based μ3D-printed smart materials. Detailed knowledge of material responsiveness is exploited to develop individually addressable “smart” valves that can be used to capture, “farm”, and then dilute motile bacteria at specified times in multichamber picoliter edifices, capabilities that offer new opportunities for studying cell–cell interactions in ultralow-volume environments

    Building on the foundation of daring hypotheses: Using the MKK4 metastasis suppressor to develop models of dormancy and metastatic colonization

    Get PDF
    AbstractThe identification of a novel metastasis suppressor function for the MAP Kinase Kinase 4 protein established a role for the stress-activated kinases in regulating the growth of disseminated cancer cells. In this review, we describe MKK4’s biological mechanism of action and how this information is being used to guide the development of new models to study cancer cell dormancy and metastatic colonization. Specifically, we describe the novel application of microvolume structures, which can be modified to represent characteristics similar to those that cancer cells experience at metastatic sites. Although MKK4 is currently one of many known metastasis suppressors, this field of research started with a single daring hypothesis, which revolutionized our understanding of metastasis, and opened up new areas of exploration for basic research. The combination of our increasing knowledge of metastasis suppressors and such novel technologies provide hope for possible clinical interventions to prevent suffering from the burden of metastatic disease
    corecore