23 research outputs found
Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation
Background: The mammalian brain is divided into distinct regions with structural and neurophysiological differences. As a result, gene expression is likely to vary between regions in relation to their cellular composition and neuronal function. In order to improve our knowledge and understanding of regional patterns of gene expression in the CNS, we have generated a global map of gene expression in selected regions of the adult rat brain (frontomedial-, temporal- and occipital cortex, hippocampus, striatum and cerebellum; both right and left sides) as well as in three major non-neural tissues (spleen, liver and kidney) using the Applied Biosystems Rat Genome Survey Microarray. Results: By unsupervised hierarchical clustering, we found that the transcriptome within a region was highly conserved among individual rats and that there were no systematic differences between the two hemispheres (right versus left side). Further, we identified distinct sets of genes showing significant regional enrichment. Functional annotation of each of these gene sets clearly reflected several important physiological features of the region in question, including synaptic transmission within the cortex, neurogenesis in hippocampus and G-protein-mediated signalling in striatum. In addition, we were able to reveal potentially new regional features, such as mRNA transcription- and neurogenesis-annotated activities in cerebellum and differential use of glutamate signalling between regions. Finally, we determined a set of 'CNSsignature' genes that uncover characteristics of several common neuronal processes in the CNS, with marked overrepresentation of specific features of synaptic transmission, ion transport and cell communication, as well as numerous novel unclassified genes. Conclusion: We have generated a global map of gene expression in the rat brain and used this to determine functional processes and pathways that have a regional preference or ubiquitous distribution within the CNS, respectively. The existence of shared specialised neuronal activities in CNS is interesting in a context of potential functional redundancy, and future studies should further explore the overall characteristics of CNS-specific versus region-specific gene profiles in the brain
Global Gene Expression Profiling of Human Osteosarcomas Reveals Metastasis-Associated Chemokine Pattern
Global gene expression analysis was performed on a panel of 23 osteosarcoma samples of primary and metastatic origin using the Applied Biosystems Gene Expression Array System. When comparing the primary tumours with the metastases, we found a significantly increased expression of genes involved in immunological processes, for example coding for cytokines and chemokines, in the metastatic samples. In addition, a comparison of the gene expression in primary samples from patients with or without metastases demonstrated that patients who later developed metastases had high expression of the chemokine (C-X-C motif) receptor 4 (CXCR4), similar to the metastatic samples, suggesting that these signal molecules play an important role in promoting metastasis. Increased knowledge of mechanisms and interactions between specified molecular signalling pathways in osteosarcomas could lead to a more rational strategy for development of targeted therapy
EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis.
Hydrops fetalis describes fluid accumulation in at least 2 fetal compartments, including abdominal cavities, pleura, and pericardium, or in body tissue. The majority of hydrops fetalis cases are nonimmune conditions that present with generalized edema of the fetus, and approximately 15% of these nonimmune cases result from a lymphatic abnormality. Here, we have identified an autosomal dominant, inherited form of lymphatic-related (nonimmune) hydrops fetalis (LRHF). Independent exome sequencing projects on 2 families with a history of in utero and neonatal deaths associated with nonimmune hydrops fetalis uncovered 2 heterozygous missense variants in the gene encoding Eph receptor B4 (EPHB4). Biochemical analysis determined that the mutant EPHB4 proteins are devoid of tyrosine kinase activity, indicating that loss of EPHB4 signaling contributes to LRHF pathogenesis. Further, inactivation of Ephb4 in lymphatic endothelial cells of developing mouse embryos led to defective lymphovenous valve formation and consequent subcutaneous edema. Together, these findings identify EPHB4 as a critical regulator of early lymphatic vascular development and demonstrate that mutations in the gene can cause an autosomal dominant form of LRHF that is associated with a high mortality rate
Switch from stress response to homeobox transcription factors in Adipose tissue after profound fat loss
Background In obesity, impaired adipose tissue function may promote secondary disease through ectopic lipid accumulation and excess release of adipokines, resulting in systemic low-grade inflammation, insulin resistance and organ dysfunction. However, several of the genes regulating adipose tissue function in obesity are yet to be identified. Methodology/Principal Findings In order to identify novel candidate genes that may regulate adipose tissue function, we analyzed global gene expression in abdominal subcutaneous adipose tissue before and one year after bariatric surgery (biliopancreatic diversion with duodenal switch, BPD/DS) (n = 16). Adipose tissue from lean healthy individuals was also analyzed (n = 13). Two different microarray platforms (AB 1700 and Illumina) were used to measure the differential gene expression, and the results were further validated by qPCR. Surgery reduced BMI from 53.3 to 33.1 kg/m2. The majority of differentially expressed genes were down-regulated after profound fat loss, including transcription factors involved in stress response, inflammation, and immune cell function (e.g., FOS, JUN, ETS, C/EBPB, C/EBPD). Interestingly, a distinct set of genes was up-regulated after fat loss, including homeobox transcription factors (IRX3, IRX5, HOXA5, HOXA9, HOXB5, HOXC6, EMX2, PRRX1) and extracellular matrix structural proteins (COL1A1, COL1A2, COL3A1, COL5A1, COL6A3). Conclusions/Significance The data demonstrate a marked switch of transcription factors in adipose tissue after profound fat loss, providing new molecular insight into a dichotomy between stress response and metabolically favorable tissue development. Our findings implicate homeobox transcription factors as important regulators of adipose tissue function
Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation
<p>Abstract</p> <p>Background</p> <p>The mammalian brain is divided into distinct regions with structural and neurophysiological differences. As a result, gene expression is likely to vary between regions in relation to their cellular composition and neuronal function. In order to improve our knowledge and understanding of regional patterns of gene expression in the CNS, we have generated a global map of gene expression in selected regions of the adult rat brain (frontomedial-, temporal- and occipital cortex, hippocampus, striatum and cerebellum; both right and left sides) as well as in three major non-neural tissues (spleen, liver and kidney) using the Applied Biosystems Rat Genome Survey Microarray.</p> <p>Results</p> <p>By unsupervised hierarchical clustering, we found that the transcriptome within a region was highly conserved among individual rats and that there were no systematic differences between the two hemispheres (right versus left side). Further, we identified distinct sets of genes showing significant regional enrichment. Functional annotation of each of these gene sets clearly reflected several important physiological features of the region in question, including synaptic transmission within the cortex, neurogenesis in hippocampus and G-protein-mediated signalling in striatum. In addition, we were able to reveal potentially new regional features, such as mRNA transcription- and neurogenesis-annotated activities in cerebellum and differential use of glutamate signalling between regions. Finally, we determined a set of 'CNS-signature' genes that uncover characteristics of several common neuronal processes in the CNS, with marked over-representation of specific features of synaptic transmission, ion transport and cell communication, as well as numerous novel unclassified genes.</p> <p>Conclusion</p> <p>We have generated a global map of gene expression in the rat brain and used this to determine functional processes and pathways that have a regional preference or ubiquitous distribution within the CNS, respectively. The existence of shared specialised neuronal activities in CNS is interesting in a context of potential functional redundancy, and future studies should further explore the overall characteristics of CNS-specific versus region-specific gene profiles in the brain.</p
Gene Expression Response in Peripheral Blood Cells of Petroleum Workers Exposed to Sub-Ppm Benzene Levels
Ce numéro aux diverses tonalités illustre à sa façon, la richesse, les limites et les difficultés des questions éthiques appliquées à l’administration publique. Ainsi que nous le verrons, l’éthique publique ne se limite pas à la lutte contre la fraude et la corruption mais inclut bien d’autres facettes, dont celles relatives aux comportements professionnels des agents et aux tensions entre valeurs personnelles ou professionnelles. Revêtu d’une dimension managériale, l’article de J. Maesschal..
Morphological-hemodynamic characteristics of intracranial mirror aneurysms.
<p>A 42-year-old male presented with severe headache. The angiograms of internal carotid artery showed an unruptured aneurysm (A) and a ruptured aneurysm (B). The distribution of normalized WSS magnitude on the aneurysms sac showing the ruptured aneurysm had a lower WSS than the unruptured one (C and D). The Streamlines showing the flow pattern of the ruptured aneurysm was complex at peak systole (E and F). Streamlines are rendered with colors according to the velocity magnitude.</p