57 research outputs found

    When Are We Done with Games?

    Get PDF

    Explainable AI for designers: A human-centered perspective on mixed-initiative co-creation

    Get PDF
    Growing interest in eXplainable Artificial Intelligence (XAI) aims to make AI and machine learning more understandable to human users. However, most existing work focuses on new algorithms, and not on usability, practical interpretability and efficacy on real users. In this vision paper, we propose a new research area of eXplainable AI for Designers (XAID), specifically for game designers. By focusing on a specific user group, their needs and tasks, we propose a human-centered approach for facilitating game designers to co-create with AI/ML techniques through XAID. We illustrate our initial XAID framework through three use cases, which require an understanding both of the innate properties of the AI techniques and users' needs, and we identify key open challenges.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work publicComp Graphics & Visualisatio

    Ariel - Volume 8 Number 3

    Get PDF
    Executive Editor James W. Lockard, Jr. Business Manager Neeraj K. Kanwal University News Richard J . Perry World News Doug Hiller Opinions Elizabeth A. McGuire Features Patrick P. Sokas Sports Desk Shahab S. Minassian Managing Editor Edward H. Jasper Managing Associate Brenda Peterson Photography Editor Robert D. Lehman. Jr. Graphics Christine M. Kuhnl

    Crea.Blender: A Neural Network-Based Image Generation Game to Assess Creativity

    Get PDF
    We present a pilot study on crea.blender, a novel co-creative game designed for large-scale, systematic assessment of distinct constructs of human creativity. Co-creative systems are systems in which humans and computers (often with Machine Learning) collaborate on a creative task. This human-computer collaboration raises questions about the relevance and level of human creativity and involvement in the process. We expand on, and explore aspects of these questions in this pilot study. We observe participants play through three different play modes in crea.blender, each aligned with established creativity assessment methods. In these modes, players "blend" existing images into new images under varying constraints. Our study indicates that crea.blender provides a playful experience, affords players a sense of control over the interface, and elicits different types of player behavior, supporting further study of the tool for use in a scalable, playful, creativity assessment.Comment: 4 page, 6 figures, CHI Pla

    Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopic observations: 2. Using isotopic diagnostics to understand the mid and upper tropospheric moist bias in the tropics and subtropics

    Get PDF
    Evaluating the representation of processes controlling tropical and subtropical tropospheric relative humidity (RH) in atmospheric general circulation models (GCMs) is crucial to assess the credibility of predicted climate changes. GCMs have long exhibited a moist bias in the tropical and subtropical mid and upper troposphere, which could be due to the mis-representation of cloud processes or of the large-scale circulation, or to excessive diffusion during water vapor transport. The goal of this study is to use observations of the water vapor isotopic ratio to understand the cause of this bias. We compare the three-dimensional distribution of the water vapor isotopic ratio measured from space and ground to that simulated by several versions of the isotopic GCM LMDZ. We show that the combined evaluation of RH and of the water vapor isotopic composition makes it possible to discriminate the most likely cause of RH biases. Models characterized either by an excessive vertical diffusion, an excessive convective detrainment or an underestimated in situ cloud condensation will all produce a moist bias in the free troposphere. However, only an excessive vertical diffusion can lead to a reversed seasonality of the free tropospheric isotopic composition in the subtropics compared to observations. Comparing seven isotopic GCMs suggests that the moist bias found in many GCMs in the mid and upper troposphere most frequently results from an excessive diffusion during vertical water vapor transport. This study demonstrates the added value of water vapor isotopic measurements for interpreting shortcomings in the simulation of RH by climate models

    Development and evaluation of the modiolar research array – multi-centre collaborative study in human temporal bones

    Get PDF
    OBJECTIVE: Multi-centre collaborative study to develop and refine the design of a prototype thin perimodiolar cochlear implant electrode array and to assess feasibility for use in human subjects. STUDY DESIGN: Multi-centre temporal bone insertion studies. MATERIALS AND METHODS: The modiolar research array (MRA) is a thin pre-curved electrode that is held straight for initial insertion with an external sheath rather than an internal stylet. Between November 2006 and February 2009, six iterations of electrode design were studied in 21 separate insertion studies in which 140 electrode insertions were performed in 85 human temporal bones by 12 surgeons. These studies aimed at addressing four fundamental questions related to the electrode concept, being: (1) Could a sheath result in additional intra-cochlear trauma? (2) Could a sheath accommodate variations in cochlea size and anatomies? (3) Could a sheath be inserted via the round window? and (4) Could a sheath be safely removed once the electrode had been inserted? These questions were investigated within these studies using a number of evaluation techniques, including X-ray and microfluoroscopy, acrylic fixation and temporal bone histologic sectioning, temporal bone microdissection of cochlear structures with electrode visualization, rotational tomography, and insertion force analysis. RESULTS: Frequent examples of electrode rotation and tip fold-over were demonstrated with the initial designs. This was typically caused by excessive curvature of the electrode tip, and also difficulty in handling of the electrode and sheath. The degree of tip curvature was progressively relaxed in subsequent versions with a corresponding reduction in the frequency of tip fold-over. Modifications to the sheath facilitated electrode insertion and sheath removal. Insertion studies with the final MRA design demonstrated minimal trauma, excellent perimodiolar placement, and very small electrode dimensions within scala tympani. Force measurements in temporal bones demonstrated negligible force on cochlear structures with angular insertion depths of between 390 and 450°. CONCLUSION: The MRA is a novel, very thin perimodiolar prototype electrode array that has been developed using a systematic collaborative approach. The different evaluation techniques employed by the investigators contributed to the early identification of issues and generation of solutions. Regarding the four fundamental questions related to the electrode concept, the studies demonstrated that (1) the sheath did not result in additional intra-cochlear trauma; (2) the sheath could accommodate variations in cochlea size and anatomies; (3) the sheath was more successfully inserted via a cochleostomy than via the round window; and (4) the sheath could be safely removed once the electrode had been inserted

    Revealing the mechanism of how cardiac myosin-binding protein C N-terminal fragments sensitize thin filaments for myosin binding

    Get PDF
    Cardiac muscle contraction is triggered by calcium binding to troponin. The consequent movement of tropomyosin permits myosin binding to actin, generating force. Cardiac myosin-binding protein C (cMyBP-C) plays a modulatory role in this activation process. One potential mechanism for the N-terminal domains of cMyBP-C to achieve this is by binding directly to the actin-thin filament at low calcium levels to enhance the movement of tropomyosin. To determine the molecular mechanisms by which cMyBP-C enhances myosin recruitment to the actin-thin filament, we directly visualized fluorescently labeled cMyBP-C N-terminal fragments and GFP-labeled myosin molecules binding to suspended actin-thin filaments in a fluorescence-based single-molecule microscopy assay. Binding of the C0C3 N-terminal cMyBP-C fragment to the thin filament enhanced myosin association at low calcium levels. However, at high calcium levels, C0C3 bound in clusters, blocking myosin binding. Dynamic imaging of thin filament-bound Cy3-C0C3 molecules demonstrated that these fragments diffuse along the thin filament before statically binding, suggesting a mechanism that involves a weak-binding mode to search for access to the thin filament and a tight-binding mode to sensitize the thin filament to calcium, thus enhancing myosin binding. Although shorter N-terminal fragments (Cy3-C0C1 and Cy3-C0C1f) bound to the thin filaments and displayed modes of motion on the thin filament similar to that of the Cy3-C0C3 fragment, the shorter fragments were unable to sensitize the thin filament. Therefore, the longer N-terminal fragment (C0C3) must possess the requisite domains needed to bind specifically to the thin filament in order for the cMyBP-C N terminus to modulate cardiac contractility

    Mesobot : An Autonomous Underwater Vehicle for Tracking and Sampling Midwater Targets

    Get PDF
    Mesobot, a new class of autonomous underwater vehicle, will address specific unmet needs for observing slow-moving targets in the midwater ocean. Mesobot will track targets such as zooplankton, fish, and descending particle aggregates using a control system based on stereo cameras and a combination of thrusters and a variable buoyancy system. The vehicle will also be able to collect biogeochemical and environmental DNA (eDNA) samples using a pumped filter sampler

    HIV seroprevalence and its effect on outcome of moderate to severe burn injuries: A Ugandan experience

    Get PDF
    \ud \ud HIV infection in a patient with burn injuries complicates the care of both the patient and the treating burn team. This study was conducted to establish the prevalence of HIV among burn patients in our setting and to compare the outcome of these patients who are HIV positive with those who are HIV negative. This was a prospective cohort study involving burn injury patients admitted to Mulago Hospital between November 2005 and February 2006. Patients were stratified into HIV positive (exposed) group and HIV-negative (unexposed) group. Data was collected using a pre-tested coded questionnaire and analyzed using SPSS statistical computer software version 11.5. Of the 130 patients included in the study, 17 (13.1%) patients tested HIV positive and this formed the study (exposed) group. The remaining 113 patients (86.9%) formed the control (unexposed) group. In the HIV positive group, females outnumbered males by a ratio of 1.4:1 and the mean age was 28.4 ± 21.5 years (range 3 months-34 years). 64.7% of HIV positive patients reported to have risk factors for HIV infection. Of these, multiple sexual partners [Odds Ratio 8.44, 95% C.I. (3.87-143.23), P = 0.011] and alcoholism [Odds Ratio 8.34, 95% C.I. (5.76-17.82), P = 0.002] were found to be independently and significantly associated with increased risk to HIV infection. The mean CD4 count for HIV positive and HIV negative patients were 394 ± 328 cells/μL and 912 ± 234 cells/μL respectively which is statistically significant (P = 0.001). There was no difference in the bacteria cultured from the wounds of HIV positive and negative patients (P = 0.322). Patients with clinical signs of sepsis had lower CD4+ counts compared to patients without sepsis (P < 0.001). ). Skin grafting was carried out in 35.3% of HIV negative patients and 29.4% of HIV positive patients with no significant difference in skin graft take and the degree of healed burn on discharge was the same (P = 0.324). There was no significant difference in hospital stay between HIV positive and negative patients (P = 0.674). The overall mortality rate was 11.5%. Using multivariate logistic regression analysis, mortality rate was found to be independently and significantly related to the age of the patient, HIV positive with stigmata of AIDS, CD4 count, inhalation injury, %TBSA and severity of burn (p-value < 0.001). HIV infection is prevalent among burn injury patients in our setting and thus presents an occupational hazard to health care workers who care for these patients. All burn health care workers in this region need to practice universal precautions in order to reduce the risk of exposure to HIV infection and post-exposure prophylaxis should be emphasized. The outcome of burn injury in HIV infected patients is dependent upon multiple variables such as age of the patient, inhalation injury and %TBSA and not the HIV status alone
    corecore