427 research outputs found

    Josephson effect in MgB_2 break junctions

    Get PDF
    We present the first observation of the DC and AC Josephson effect in MgB_2 break junctions. The junctions, obtained at 4.2 K in high-quality, high-density polycrystalline metallic MgB_2 samples, show a non-hysteretic DC Josephson effect. By irradiating the junctions with microwaves we observe clear Shapiro steps spaced by the ideal ΔV\Delta V value. The temperature dependence of the DC Josephson current and the dependence of the height of the steps on the microwave power are obtained. These results are a direct prove for the existence of pairs with charge 2e in this new metallic superconductor and give evidence of the superconductor-normal metal-superconductor weak link character of these junctions.Comment: 4 RevTEX pages, 4 eps figure

    Low-Mass Relics of Early Star Formation

    Full text link
    The earliest stars to form in the Universe were the first sources of light, heat and metals after the Big Bang. The products of their evolution will have had a profound impact on subsequent generations of stars. Recent studies of primordial star formation have shown that, in the absence of metals (elements heavier than helium), the formation of stars with masses 100 times that of the Sun would have been strongly favoured, and that low-mass stars could not have formed before a minimum level of metal enrichment had been reached. The value of this minimum level is very uncertain, but is likely to be between 10^{-6} and 10^{-4} that of the Sun. Here we show that the recent discovery of the most iron-poor star known indicates the presence of dust in extremely low-metallicity gas, and that this dust is crucial for the formation of lower-mass second-generation stars that could survive until today. The dust provides a pathway for cooling the gas that leads to fragmentation of the precursor molecular cloud into smaller clumps, which become the lower-mass stars.Comment: Offprint of Nature 422 (2003), 869-871 (issue 24 April 2003

    The Syntaxin-1A gene single nucleotide polymorphism rs4717806 associates with the risk of ischemic heart disease

    Get PDF
    Ischemic heart disease (IHD) has a genetic predisposition and a number of cardiovascular risk factors are known to be affected by genetic factors. Development of metabolic syndrome and insulin resistance, strongly influenced by lifestyle and environmental factors, frequently occur in subjects with a genetic susceptibility. The definition of genetic factors influencing disease susceptibility would allow to identify individuals at higher risk and thus needing to be closely monitored.To this end, we focused on a complex of soluble-N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), playing an important role in metabolic syndrome and insulin resistance, involved in endothelial dysfunction and heart disease. We assessed if genetic variants of the SNARE genes are associated with IHD.SNAP25 rs363050, Stx-1A rs4717806, rs2293489, and VAMP2 26bp ins/del genetic polymorphisms were analyzed in a cohort of 100 participants who underwent heart surgery; 56 of them were affected by IHD, while 44 were not. A statistical association of plasma glycemia and insulin resistance, calculated as Triglyceride glucose (TyG) index, was observed in IHD (P<.001 and P=.03, respectively) after binomial logistic stepwise regression analysis, adjusted by age, gender, diabetes positivity, waist circumference, and cholesterol plasma level. Among genetic polymorphisms, rs4717806(A) and rs2293489(T), as well as the rs4717806 - rs2293489 (A-T) haplotype were associated with higher risk for IHD (Pc=.02; Pc=.02; P=.04, respectively). Finally, a statistical association of rs4717806(AA) genotype with higher TyG index in IHD patients (P=.03) was highlighted by multiple regression analysis considering log-transformed biochemical parameters as dependent variable and presence of coronary artery disease, age, gender, waist circumference, presence of diabetes as predictors. These results point to a role of the Stx-1A rs4717806 SNP in IHD, possibly due to its influence on Stx-1A expression and, as a consequence, on insulin secretion and glucose metabolism

    Diffusion bonding effects on the adhesion of tungsten dust on tungsten surfaces

    Get PDF
    Abstract High temperature excursions have the potential to strongly enhance the room temperature adhesion of tokamak dust. Planar tungsten substrates containing adhered nearly monodisperse spherical tungsten dust have been exposed to linear plasmas and vacuum furnaces. Prolonged thermal treatments of varying peak temperature and constant duration were followed by room temperature adhesion measurements with the electrostatic detachment method. Adhesive forces have been observed to strongly depend on the thermal pre-history, greatly increasing above a threshold temperature. Adhesive forces have been measured up to an order of magnitude larger than those of untreated samples. This enhancement has been attributed to atomic diffusion that slowly eliminates the omnipresent nanometer-scale surface roughness, ultimately switching the dominant interaction from long-range weak van der Waals forces to short-range strong metallic bonding

    Analisi del comportamento a creep della superlega Nimonic 263

    Get PDF
    Il comportamento a creep della superlega Nimonic 263 è stato studiato a carico e temperatura costantenell’intervallo 750-30MPa/600-950°C. I risultati sperimentali hanno mostrato che la forma della curva dicreep dipende fortemente dalle sollecitazioni applicate. Nelle prove eseguite a sollecitazioni superiori al caricodi snervamento, le curve di creep consistono essenzialmente nel solo stadio primario/decelerante, mentre persollecitazioni inferiori, ed in particolare ai più bassi carichi ed elevate temperature qui studiati, lo stadioprimario diventa molto piccolo e breve, ed altri stadi di deformazione dominano le curve di creep.In questo lavoro si dimostra che un’unica e semplice equazione costitutiva, basata sulla moltiplicazione eannichilazione delle dislocazioni mobili, è in grado di descrivere e interpolare correttamente le curve di creepin tutto l’intervallo di sollecitazioni/temperature esplorat

    Chemistry of heavy elements in the Dark Ages

    Get PDF
    Primordial molecules were formed during the Dark Ages, i.e. the time between recombination and reionization in the early Universe. The purpose of this article is to analyze the formation of primordial molecules based on heavy elements during the Dark Ages, with elemental abundances taken from different nucleosynthesis models. We present calculations of the full non-linear equation set governing the primordial chemistry. We consider the evolution of 45 chemical species and use an implicit multistep method of variable order of precision with an adaptive stepsize control. We find that the most abundant Dark Ages molecules based on heavy elements are CH and OH. Non-standard nucleosynthesis can lead to higher heavy element abundances while still satisfying the observed primordial light abundances. In that case, we show that the abundances of molecular species based on C, N, O and F can be enhanced by two orders of magnitude compared to the standard case, leading to a CH relative abundance higher than that of HD+ or H2D+.Comment: 14 pages, accepted by Astronomy and Astrophysic

    Dark Matter Capture in the First Stars: a Power Source and Limit on Stellar Mass

    Full text link
    The annihilation of weakly interacting massive particles can provide an important heat source for the first (Pop. III) stars, potentially leading to a new phase of stellar evolution known as a "Dark Star". When dark matter (DM) capture via scattering off of baryons is included, the luminosity from DM annihilation may dominate over the luminosity due to fusion, depending on the DM density and scattering cross-section. The influx of DM due to capture may thus prolong the lifetime of the Dark Stars. Comparison of DM luminosity with the Eddington luminosity for the star may constrain the stellar mass of zero metallicity stars; in this case DM will uniquely determine the mass of the first stars. Alternatively, if sufficiently massive Pop. III stars are found, they might be used to bound dark matter properties.Comment: 19 pages, 4 figures, 3 Tables updated captions and graphs, corrected grammer, and added citations revised for submission to JCA

    Dark Stars and Boosted Dark Matter Annihilation Rates

    Full text link
    Dark Stars (DS) may constitute the first phase of stellar evolution, powered by dark matter (DM) annihilation. We will investigate here the properties of DS assuming the DM particle has the required properties to explain the excess positron and elec- tron signals in the cosmic rays detected by the PAMELA and FERMI satellites. Any possible DM interpretation of these signals requires exotic DM candidates, with an- nihilation cross sections a few orders of magnitude higher than the canonical value required for correct thermal relic abundance for Weakly Interacting Dark Matter can- didates; additionally in most models the annihilation must be preferentially to lep- tons. Secondly, we study the dependence of DS properties on the concentration pa- rameter of the initial DM density profile of the halos where the first stars are formed. We restrict our study to the DM in the star due to simple (vs. extended) adiabatic contraction and minimal (vs. extended) capture; this simple study is sufficient to illustrate dependence on the cross section and concentration parameter. Our basic results are that the final stellar properties, once the star enters the main sequence, are always roughly the same, regardless of the value of boosted annihilation or concentration parameter in the range between c=2 and c=5: stellar mass ~ 1000M\odot, luminosity ~ 10^7 L\odot, lifetime ~ 10^6 yrs (for the minimal DM models considered here; additional DM would lead to more massive dark stars). However, the lifetime, final mass, and final luminosity of the DS show some dependence on boost factor and concentration parameter as discussed in the paper.Comment: 37 pages, 11 figure
    • …
    corecore