11 research outputs found

    A 50,000-year record of lake-level variations and overflow from Owens Lake, eastern California, USA

    Get PDF
    A continuous lake-level curve was constructed for Owens Lake, eastern California by integrating lake-core data and shoreline geomorphology with new wind-wave and sediment entrainment modeling of lake-core sedimentology. This effort enabled refinement of the overflow history and development of a better understanding of the effects of regional and global climate variability on lake levels of the paleo-Owens River system during the last 50,000 years. The elevations of stratigraphic sites, plus lake bottom and spillway positions were corrected for vertical tectonic deformation using a differential fault-block model to estimate the absolute hydrologic change of the watershed-lake system. New results include 14C dating of mollusk shells in shoreline deposits, plus post-IR-IRSL dating of a suite of five beach ridges and OSL dating of spillway alluvial and deltaic deposits in deep boreholes. Geotechnical data show the overflow area is an entrenched channel that had erodible sills composed of unconsolidated fluvial-deltaic and alluvial sediment at elevations of ∼1113–1165 m above mean sea level. Owens Lake spilled most of the time at or near minimum sill levels, controlled by a bedrock sill at ∼1113 m. Nine major transgressions at ∼40.0, 38.7, 23.3, 19.3, 15.6, 13.8, 12.8, 11.6, and 10.6 ka reached levels ∼10–45 m above the bedrock sill. Several major regressions at or below the bedrock sill from 36.9 to 28.5 ka, and at ∼17.8, 12.9, and 10.4–8.8 ka indicate little to no overflow during these times. The latest period of overflow occurred ∼10–20 m above the bedrock sill from ∼8.4 to 6.4 ka that was followed by closed basin conditions after ∼6.4 ka. Previous lake core age-depth models were revised by accounting for sediment compaction and using no reservoir correction for open basin conditions, thereby reducing discrepancies between Owens Lake shoreline and lake-core proxy records. The integrated analysis provides a continuous 50 ka lake-level record of hydroclimate variability along the south-central Sierra Nevada that is consistent with other shoreline and speleothem records in the southwestern U.S

    Sediment residence time distributions: theory and application from bed elevation measurements

    No full text
    [1] Travel distance and residence time probability distributions are the key components of stochastic models for coarse sediment transport. Residence time for individual grains is difficult to measure, and residence time distributions appropriate to field and laboratory settings are typically inferred theoretically or from overall transport characteristics. However, bed elevation time series collected using sonar transducers and lidar can be translated into empirical residence time distributions at each elevation in the bed and for the entire bed thickness. Sediment residence time at a given depth can be conceptualized as a stochastic return time process on a finite interval. Overall sediment residence time is an average of residence times at all depths weighted by the likelihood of deposition at each depth. Theory and experiment show that when tracers are seeded on the bed surface, power law residence time will be observed until a timescale set by the bed thickness and bed fluctuation statistics. After this time, the long-time (global) residence time distribution will take exponential form. Crossover time is the time of transition from power law to exponential behavior. The crossover time in flume studies can be on the order of seconds to minutes, while that in rivers can be days to years

    Multiscaling Fractional Advection-Dispersion Equations and Their Solutions

    No full text
    rocesses; 3250 Mathematical Geophysics: Fractals and multifractals; 5104 Physical Properties of Rocks: Fracture and flow; 5139 Physical Properties of Rocks: Transport properties; KEYWORDS: fractional, dispersion, fractal, fracture, anomalous, transport Citation: Schumer, R., D. A. Benson, M. M. Meerschaert, and B. Baeumer, Multiscaling fractional advection-dispersion equations and their solutions, Water Resour. Res., 39(1), 1022, doi:10.1029/2001WR001229, 2003. 1. Introduction [2] Hundreds of studies have proposed modeling techniques to address the super-Fickian transport of solutes in aquifers. Among them are fractional advection-dispersion equations (ADEs), analytical equations that employ fractional derivatives in describing the growth and scaling of diffusion-like plume spreading. Fractional ADEs are the limiting equations governing continuous time random walks (CTRW) with arbitrary particle jump length distribution and finite mean waiting time distribution [Compte, 1996]. T

    Displacement characteristics of coarse fluvial bed sediment

    Get PDF
    [1] Previous work highlights the need for data collection to identify appropriate models for temporal evolution of tracer dispersal in rivers. Results of 64 gravel-bed field tracer experiments covering a wide range of flow and sediment supply regimes are compiled here to determine the probabilistic character of gravel transport. We focus on whether particle travel distances and waits are thin- or heavy-tailed. While heavy-tailed travel distance distributions are observed between successive monitoring events in different hydrological and sediment supply regimes, heavy-tailedness does not persist through total travel distance over multiple monitoring events, suggesting that individual monitoring events occur before particle travel distance exceeds the characteristic correlation length for the channel (such that particles that start in fast paths remain in fast paths and particles in slow paths remain in slow paths). After a large number of transport events, super-diffusive spreading was not observed at any of the gravel bed streams. Continuous-time tracking of x, y, z coordinates of tracers in natural streams is necessary to capture exact step and waiting time distributions

    Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests

    No full text
    The macrodispersion experiments (MADE) at the Columbus Air Force Base in Mississippi were conducted in a highly heterogeneous aquifer that violates the basic assumptions of local 2 -- order theories. A governing equation that describes particles that undergo Lvy motion, rather than Brownian motion, readily describes the highly skewed and heavy--tailed plume development at the MADE site. The new governing equation is based on a fractional, rather than integer, order of differentiation. This order (#), based on MADE plume measurements, is approximately 1.1. The hydraulic conductivity (K) increments also follow a power law of order # = 1.1. We conjecture that the heavy--tailed K distribution gives rise to a heavy--tailed velocity field that directly implies the fractional--order governing equation derived herein. Simple arguments lead to accurate estimates of the velocity and dispersion constants based only on the aquifer hydraulic properties. This supports the idea that the correct governing equation can be accurately determined before, or after, a contamination event. While the traditional ADE fails to model a conservative tracer in the MADE aquifer, the fractional equation predicts tritium concentration profiles with remarkable accuracy over all spatial and temporal scales

    Quantifying the role of climate and landscape characteristics on hydrologic partitioning and vegetation response

    No full text
    [1] There is no consensus on how changes in both temperature and precipitation will affect regional vegetation. We investigated controls on hydrologic partitioning at the catchment scale across many different ecoregions, and compared the resulting estimates of catchment wetting and vaporization (evapotranspiration) to remotely sensed indices of vegetation greenness. The fraction of catchment wetting vaporized by plants, known as the Horton index, is strongly related to the ratio of available energy to available water at the Earth's surface, the aridity index. Here we show that the Horton index is also a function of catchment mean slope and elevation, and is thus related to landscape characteristics that control how much and how long water is retained in a catchment. We compared the power of the components of the water and energy balance, as well as landscape characteristics, to predict Normalized Difference Vegetation Index (NDVI), a surrogate for vegetation productivity, at 312 Model Parameter Estimation Experiment (MOPEX) catchments across the United States. Statistical analysis revealed that the Horton index provides more precision in predicting maximum annual NDVI for all catchments than mean annual precipitation, potential evapotranspiration, or their ratio, the aridity index. Models of vegetation productivity should emphasize plant-available water, rather than just precipitation, by incorporating the interaction of climate and landscape. Major findings related to the Horton index are: (1) it is a catchment signature that is relatively constant from year-to-year; (2) it is related to specific landscape characteristics; (3) it can be used to create catchment typologies; and (4) it is related to overall catchment greenness

    Rain or snow: hydrologic processes, observations, prediction, and research needs

    Get PDF
    The phase of precipitation when it reaches the ground is a first-order driver of hydrologic processes in a watershed. The presence of snow, rain, or mixed-phase precipitation affects the initial and boundary conditions that drive hydrological models. Despite their foundational importance to terrestrial hydrology, typical phase partitioning methods (PPMs) specify the phase based on near-surface air temperature only. Our review conveys the diversity of tools available for PPMs in hydrological modeling and the advancements needed to improve predictions in complex terrain with large spatiotemporal variations in precipitation phase. Initially, we review the processes and physics that control precipitation phase as relevant to hydrologists, focusing on the importance of processes occurring aloft. There is a wide range of options for field observations of precipitation phase, but there is a lack of a robust observation networks in complex terrain. New remote sensing observations have the potential to increase PPM fidelity, but generally require assumptions typical of other PPMs and field validation before they are operational. We review common PPMs and find that accuracy is generally increased at finer measurement intervals and by including humidity information. One important tool for PPM development is atmospheric modeling, which includes microphysical schemes that have not been effectively linked to hydrological models or validated against near-surface precipitation-phase observations. The review concludes by describing key research gaps and recommendations to improve PPMs, including better incorporation of atmospheric information, improved validation datasets, and regional-scale gridded data products. Two key points emerge from this synthesis for the hydrologic community: (1) current PPMs are too simple to capture important processes and are not well validated for most locations, (2) lack of sophisticated PPMs increases the uncertainty in estimation of hydrological sensitivity to changes in precipitation phase at local to regional scales. The advancement of PPMs is a critical research frontier in hydrology that requires scientific cooperation between hydrological and atmospheric modelers and field scientists
    corecore