43 research outputs found

    Alimentation sociale chez le capucin damier (Lonchura punctulata) : exploration de l'effet de la taille du groupe et des coûts liés à l'utilisation de l'information sociale

    Get PDF
    De nombreuses espĂšces animales vivent et s'alimentent en groupe, une situation qui requiĂšre que les animaux adoptent des rĂ©ponses comportementales spĂ©cifiques Ă  cette condition sociale. Les travaux effectuĂ©s lors de mes Ă©tudes doctorales se sont principalement intĂ©ressĂ©s Ă  explorer les effets que peuvent avoir le nombre de compagnons ainsi que leurs comportements et dĂ©cisions sur les rĂ©ponses comportementales des individus appartenant Ă  une espĂšce sociale d'EstrildidĂ©s, le capucin damier (Lonchura punctulata). Une diminution de la vigilance individuelle combinĂ©e Ă  une augmentation de la vitesse d'alimentation est gĂ©nĂ©ralement rapportĂ©e lorsque la taille du groupe augmente. L'augmentation des taux d'alimentation est communĂ©ment expliquĂ©e par les bĂ©nĂ©fices en sĂ©curitĂ© d'ĂȘtre en groupe: le temps Ă©pargnĂ© en vigilance Ă©tant rĂ©allouĂ© dans l'alimentation. Cependant, ceci peut Ă©galement ĂȘtre expliquĂ© par l'augmentation de la compĂ©tition pour les ressources. Il demeure difficile de distinguer entre les diffĂ©rentes fonctions des rĂ©ponses comportementales induites par une augmentation de la taille du groupe Ă  cause de la difficultĂ© de modifier le comportement des compagnons sans modifier la taille du groupe. Nous avons dĂ©veloppĂ© une technique basĂ©e sur l'utilisation de repasses d'images vidĂ©os afin de pouvoir contrĂŽler prĂ©cisĂ©ment les comportements de vigilance et d'approvisionnement des compagnons. Le premier chapitre prĂ©sente la premiĂšre validation de la technique de repasses d'images vidĂ©os dans un contexte d'alimentation sociale chez le capucin damier. Des oiseaux focaux ont Ă©tĂ© testĂ©s dans un dispositif expĂ©rimental leur permettant de s'alimenter face Ă  des compagnons ou face Ă  des sĂ©quences vidĂ©os de conspĂ©cifiques engagĂ©s dans l'alimentation. Nos rĂ©sultats suggĂšrent que les capucins damiers expriment bien des rĂ©ponses comportementales en accord avec l'effet de la taille du groupe. Nos rĂ©sultats montrent Ă©galement que les individus focaux expriment des patrons de vigilance et d'alimentation similaires lorsqu'ils s'alimentent dans des groupes composĂ©s de compagnons rĂ©els ou simulĂ©s. Il est donc possible de conclure que la technique de repasses d'images vidĂ©os est appropriĂ©e pour explorer l'approvisionnement social chez des espĂšces aviaires. Dans le second chapitre, nous avons testĂ© l'origine de cette augmentation chez les capucins damiers. En utilisant des repasses vidĂ©os, nous avons modifiĂ© la taille des groupes et les comportements des compagnons. Nos rĂ©sultats indiquent que l'augmentation des taux d'alimentation n'apparaĂźt que si les compagnons s'alimentent. Des compagnons ne s'alimentant pas n'induisent ni une diminution de\ud la vigilance individuelle ni l'augmentation des taux d'alimentation. Une augmentation du niveau de compĂ©tition induit une diminution de la vigilance des individus focaux. Nos rĂ©sultats indiquent que l'effet de la taille du groupe chez les capucins damiers semble donc ĂȘtre induit par les coĂ»ts imposĂ©s par la compĂ©tition pour les ressources. Le troisiĂšme chapitre est dĂ©diĂ© Ă  l'Ă©tude des diffĂ©rences interindividuelles lors de l'ajustement comportemental face Ă  une augmentation de la taille du groupe. Dans un premier temps, il a Ă©tĂ© montrĂ© que, malgrĂ© des diffĂ©rences interindividuelles constantes entre les individus suggĂ©rant une forte constance comportementale, les capucins damiers expriment des patrons similaires de vigilance et d'alimentation en rĂ©ponse Ă  un changement de la taille du groupe. Dans un deuxiĂšme temps, nous avons comparĂ© la force de la plasticitĂ© comportementale face Ă  celle de la constance comportementale. Nos rĂ©sultats suggĂšrent qu'une forte plasticitĂ© comportementale semble ĂȘtre favorisĂ©e dans un contexte d'approvisionnement social, car elle devient le prix Ă  payer pour rĂ©pondre adĂ©quatement Ă  des changements de pression de compĂ©tition pour la ressource lorsque le nombre de compĂ©titeurs change. L'information sociale, que des individus obtiennent en observant les dĂ©cisions de leurs congĂ©nĂšres, peut parfois entrer en conflit avec leur information personnelle. Dans le quatriĂšme chapitre, nous avons explorĂ© les coĂ»ts Ă©ventuels de l'utilisation d'information sociale dans un contexte d'approvisionnement social chez le capucin damier. Il est admis que d'outrepasser son information personnelle et copier les dĂ©cisions des autres peut ĂȘtre optimal; les individus pouvant alors se retrouver engagĂ©s dans des cascades d'information. Si ces cascades impliquent souvent les bonnes dĂ©cisions, elles peuvent entraĂźner le groupe Ă  adopter des comportements incorrects. Nous avons examinĂ© comment les capucins damiers utilisent prĂ©fĂ©rentiellement soit l'information sociale soit leur information personnelle dans des situations oĂč les deux types d'informations sont en accord ou se contredisent et en fonction de la force de l'information sociale. Nos rĂ©sultats montrent que les capucins damiers outrepassent une information personnelle dont la fiabilitĂ© est Ă©levĂ©e lorsque de l'information sociale suffisamment persuasive est prĂ©sentĂ©e. Si ces phĂ©nomĂšnes de cascades ont Ă©tĂ© dĂ©crits chez des humains, notre Ă©tude constitue la premiĂšre Ă©vidence empirique montrant que les premiers Ă©vĂšnements d'une cascade d'information peuvent apparaĂźtre chez des animaux qui s'alimentent en groupe. En conclusion, nous avons montrĂ© que chez une espĂšce d'oiseaux s'alimentant en groupe, les individus vont moduler leurs comportements en fonction, non seulement du nombre et des comportements des autres membres du groupe, mais Ă©galement de leurs dĂ©cisions et de la force de l'information sociale. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Capucin damier, Lonchura punctulata, Effet de la taille du groupe, Approvisionnement social, Information sociale, CompĂ©tition par exploitation, Repasse d'images vidĂ©o, PlasticitĂ© comportementale, Constance comportementale

    18. Do Blue Crabs Respond to Visual Cues of Avian Predators?

    Get PDF
    Blue crabs are keystone consumers and scavengers in estuarine ecosystems. The distribution of these important consumers in shallow habitats may be affected by predation from wading birds, like herons. However, we have little information about how or if blue crabs respond to the presence of avian predators. Floating vegetation, like water hyacinth, may provide a refuge from wading birds in shallow habitats. Water hyacinth, an invasive freshwater plant that occupies marsh edges in low salinity marshes, and previous research found that high abundances of blue crabs were associated with this vegetation. Blue crabs may use the hair-like roots that are suspended in the water as a habitat to hide from predators. Here, we examined if blue crabs respond to visual cues of avian predators and increase their use of water hyacinth habitats by recording crab behavioral responses to heron decoys and pvc controls. Shallow water hyacinth habitats occupied by one blue crab were created in small pools. After a 30 minute acclimation period, a heron decoy or a pvc pipe was placed over the pool. We measured the amount of time spent in open and hyacinth habitats and the number of habitat transitions. Heron treatments did not significantly alter habitat use or the movement between habitats suggesting blue crabs do not respond to heron visual cues. Blue crabs may require movement rather than a visual cues alone to respond to avian predators. Future studies could be conducted to determine how movement, or differing bird predators may affect crabs to further understand how avian predators may affect the distribution of this keystone species

    Collective responses of a large mackerel school depend on the size and speed of a robotic fish but not on tail motion

    Get PDF
    So far, actuated fish models have been used to study animal interactions in small-scale controlled experiments. This study, conducted in a semi-controlled setting, investigates robot5interactions with a large wild-caught marine fish school (∌3000 individuals) in their natural social environment. Two towed fish robots were used to decouple size, tail motion and speed in a series of sea-cage experiments. Using high-resolution imaging sonar and sonar-video blind scoring, we monitored and classified the school's collective reaction towards the fish robots as attraction or avoidance. We found that two key releasers—the size and the speed of the robotic fish—were responsible for triggering either evasive reactions or following responses. At the same time, we found fish reactions to the tail motion to be insignificant. The fish evaded a fast-moving robot even if it was small. However, mackerels following propensity was greater towards a slow small robot. When moving slowly, the larger robot triggered significantly more avoidance responses than a small robot. Our results suggest that the collective responses of a large school exposed to a robotic fish could be manipulated by tuning two principal releasers—size and speed. These results can help to design experimental methods for in situ observations of wild fish schools or to develop underwater robots for guiding and interacting with free-ranging aggregated aquatic organisms.This work was financed by the Norwegian Research Council (grant 204229/F20) and Estonian Government Target Financing (grant SF0140018s12). JCC was partially supported by a grant from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism, operated by Universidad Complutense de Madrid. We are grateful to A. Totland for his technical help. The animal collection was approved by The Royal Norwegian Ministry of Fisheries, and the experiment was approved by the Norwegian Animal Research Authority. The Institute of Marine Research is permitted to conduct experiments at the Austevoll aquaculture facility by the Norwegian Biological Resource Committee and the Norwegian Animal Research Committee (ForsĂžksdyrutvalget)

    Predicting the effects of anthropogenic noise on fish reproduction

    Get PDF
    Aquatic animals use and produce sound for critical life functions, including reproduction. Anthropogenic noise is recognized as a global source of environmental pollution and adequate conservation and management strategies are urgently needed. It becomes therefore critical to identify the reproductive traits that render a species vulnerable to acoustic disturbances, and the types of anthropogenic noise that are most likely to impact reproduction. Here, we provide predictions about noise impact on fish reproduction following a two-step approach: first, we grouped documented effects of noise into three mechanistic categories: stress, masking and hearing-loss, and test which type of noise (continuous vs intermittent and regular vs irregular) was most likely to produce a significant response in each category with either a meta-analysis or a quantitative review, depending on data availability. Second, we reviewed existing literature to predict which reproductive traits would render fish most sensitive to stress, masking and hearing-loss. In step one, we concluded that continuous sounds with irregular amplitude and/or frequency-content (e.g. heavy ship traffic) were most likely to cause stress, and continuous sounds were also most likely to induce masking and hearing-loss. From step two we concluded that the vulnerability of a species to noise-induced stress will mainly depend on: (1) its potential to reallocate reproduction to more quiet times or locations, and (2) its vulnerability to masking and hearing-loss mainly on the function of sound communication in its reproductive behaviour. We discuss in which stages of reproduction fish are most likely to be vulnerable to anthropogenic noise based on these findings.publishedVersio

    Aggressive signal design in the Jacky dragon (Amphibolurus muricatus) : display duration affects efficiency

    No full text
    Design characteristics of signals, such as their duration, may have evolved to maximize signal efficiency. It is commonly assumed that constraints on signal design have usually shaped the most optimal display characteristics to improve signal transmission and information transfer of the signaller, and detection by intended receivers. In this study, we tested whether the characteristics (duration, speed and frequency) of an aggressive display, the push-up body rock, exhibited by the Jacky dragon (Amphibolurus muricatus) have likely evolved for optimal signal efficiency, as it is able to draw attention to the signaller. We performed two video playback experiments using high-resolution 3D animations testing the effect of variation in push-up body rock structure. In experiment 1, we manipulated push-up body rock display structure. We gradually increased the number of push-ups exhibited by a digitally animated Jacky dragon increasing the overall display duration. In experiment 2, we developed four stimuli based on population-typical push-up body rock display for duration (short and long), and frequency of push-ups (1 or 5 consecutive push-ups) by manipulating push-ups' speed. In both experiments, we measured the probability of an orienting response and response latency of focal lizards when being exposed to the different stimuli. Our results showed that display duration is critically important for signal efficiency in the aggressive push-up body rock display. If we are to understand the design characteristics of signals used in animal communication, then it appears important to consider the possible trade-off between signal efficiency and costs.12 page(s

    Multimodal begging signals reflect independent indices of nestling condition in European starlings

    No full text
    International audienc
    corecore