34 research outputs found

    Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: application to urban drainage simulation

    Get PDF
    International audienceThis paper presents an efficient surrogate modeling strategy for the uncertainty quantification and Bayesian calibration of a hydrological model. In particular, a process-based dynamical urban drainage simulator that predicts the discharge from a catchment area during a precipitation event is considered. The goal is to perform a global sensitivity analysis and to identify the unknown model parameters as well as the measurement and prediction errors. These objectives can only be achieved by cheapening the incurred computational costs, that is, lowering the number of necessary model runs. With this in mind, a regularity-exploiting metamodeling technique is proposed that enables fast uncertainty quantification. Principal component analysis is used for output dimensionality reduction and sparse polynomial chaos expansions are used for the emulation of the reduced outputs. Sensitivity measures such as the Sobol indices are obtained directly from the expansion coefficients. Bayesian inference via Markov chain Monte Carlo posterior sampling is drastically accelerated

    Bayesian uncertainty assessment of flood predictions in ungauged urban basins for conceptual rainfall-runoff models

    Get PDF
    Urbanization and the resulting land-use change strongly affect the water cycle and runoff-processes in watersheds. Unfortunately, small urban watersheds, which are most affected by urban sprawl, are mostly ungauged. This makes it intrinsically difficult to assess the consequences of urbanization. Most of all, it is unclear how to reliably assess the predictive uncertainty given the structural deficits of the applied models. In this study, we therefore investigate the uncertainty of flood predictions in ungauged urban basins from structurally uncertain rainfall-runoff models. To this end, we suggest a procedure to explicitly account for input uncertainty and model structure deficits using Bayesian statistics with a continuous-time autoregressive error model. In addition, we propose a concise procedure to derive prior parameter distributions from base data and successfully apply the methodology to an urban catchment in Warsaw, Poland. Based on our results, we are able to demonstrate that the autoregressive error model greatly helps to meet the statistical assumptions and to compute reliable prediction intervals. In our study, we found that predicted peak flows were up to 7 times higher than observations. This was reduced to 5 times with Bayesian updating, using only few discharge measurements. In addition, our analysis suggests that imprecise rainfall information and model structure deficits contribute mostly to the total prediction uncertainty. In the future, flood predictions in ungauged basins will become more important due to ongoing urbanization as well as anthropogenic and climatic changes. Thus, providing reliable measures of uncertainty is crucial to support decision making

    Accounting for erroneous model structures in biokinetic process models

    Get PDF
    In engineering practice, model-based design requires not only a good process-based model, but also a good description of stochastic disturbances and measurement errors to learn credible parameter values from observations. However, typical methods use Gaussian error models, which often cannot describe the complex temporal patterns of residuals. Consequently, this results in overconfidence in the identified parameters and, in turn, optimistic reactor designs. In this work, we assess the strengths and weaknesses of a method to statistically describe these patterns with autocorrelated error models. This method produces increased widths of the credible prediction intervals following the inclusion of the bias term, in turn leading to more conservative design choices. However, we also show that the augmented error model is not a universal tool, as its application cannot guarantee the desired reliability of the resulting wastewater reactor design. © 2020 Elsevier LtdMarc B. Neumann acknowledges financial support provided by the Spanish Government through the BC3 MarĂ­a de Maeztu excellence accreditation 2018–2022 (MDM-2017-0714) and the RamĂłn y Cajal grant (RYC-2013-13628); and by the Basque Government through the BERC 2018-2021 program

    Measuring diameters and velocities of artificial raindrops with a neuromorphic event camera

    Get PDF
    Hydrometers that measure size and velocity distributions of precipitation are needed for research and corrections of rainfall estimates from weather radars and microwave links. Existing optical disdrometers measure droplet size distributions, but underestimate small raindrops and are impractical for widespread always-on IoT deployment. We study the feasibility of measuring droplet size and velocity using a neuromorphic event camera. These dynamic vision sensors asynchronously output a sparse stream of pixel brightness changes. Droplets falling through the plane of focus of a steeply down-looking camera create events generated by the motion of the droplet across the field of view. Droplet size and speed are inferred from the hourglass-shaped stream of events. Using an improved hard disk arm actuator to reliably generate artificial raindrops with a range of small sizes, our experiments show maximum errors of 7 % (mean absolute percentage error) for droplet sizes from 0.3 to 2.5 mm and speeds from 1.3 to 8.0 m s−1. Measurements with the same setup from a commercial PARSIVEL disdrometer show similar results. Both devices slightly overestimate the small droplet volume with a volume overestimation of 25 % from the event camera measurements and 50 % from the PARSIVEL instrument. Each droplet requires processing of 5000 to 50 000 brightness change events, potentially enabling low-power always-on disdrometers that consume power proportional to the rainfall rate. Data and code are available at the paper website https://sites.google.com/view/dvs-disdrometer/home (Micev et al., 2023).</p

    European stakeholders’ visions and needs for stormwater in future urban drainage systems

    Get PDF
    Transitioning urban drainage systems to serve water-smart societies requires the involvement of different disciplines and stakeholders. However, stakeholders have different visions and needs from the transitioning process (e.g in terms of financing, policy adaptation and system management) these also vary between regions and countries. Identifying such different needs for stakeholders is necessary to propose practical adaptation strategies. Therefore, evidence of needs as reflected in policy papers and legislation in seven European countries was collected. Knowledgeable individuals in the urban drainage community were asked about their visions. Results show that whilst there is consensus on the challenges, visions on how to transition are diverse, indicating that more interaction between the different stakeholder groups is required to develop consensus. Additionally, organisational and legislative structures often slow down the necessary change processes

    Sewage-based epidemiology requires a truly transdisciplinary approach

    Get PDF
    If asked whether you had consumed illicit drugs recently, would you admit it? If yes, could you precisely recall types of drug, times and amounts used? If you were the person commissioned with the task of quantifying drug use, what approach would you use given the social stigma attached with such behavior? We measure drug residues in sewage, which represents urine of entire populations, to provide an objective estimate of total drug use in a region. In transdisciplinary projects, sewage-based results provide valuable information at unrivaled spatiotemporal resolution complementing traditional data
    corecore