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RÉSUMÉ 

La capacité de prédire la réponse pluie-débit d'un bassin versant urbain est essentielle pour la gestion 
efficace des systèmes de drainage et donc pour contrôler les rejets des zones urbaines. Dans cet 
article, nous étudions le potentiel des liaisons hertziennes commerciales (MWL) pour capturer la 
dynamique spatio-temporelle des précipitations et donc améliorer la modélisation pluie-débit dans les 
zones urbaines. Plus précisément, nous effectuons des simulations numériques avec des champs de 
précipitation virtuelles et comparons les résultats des estimations de précipitations MWL à ceux de 
pluviomètres. Pour une étude de cas d'un petit système d'assainissement, nos résultats montrent que 
les réseaux MWL dans les zones urbaines sont suffisamment denses pour fournir de bonnes 
informations sur la variabilité spatio-temporelle des précipitations. Donc, ils peuvent considérablement 
améliorer la prédiction des flux dans les réseaux et permettre un meilleur contrôle des rejets d'origine 
urbaine. Cela est particulièrement bénéfique pour les pluies de forte intensité, qui ont généralement 
une grande variabilité spatiale qui peut ne pas être correctement pris en compte par des mesures 
ponctuelles de pluviomètres. 

 

ABSTRACT 

The ability to predict rainfall-runoff response of an urban catchment is crucial for managing effectively 
drainage systems and thus control discharges from urban areas. In this paper we investigate potential 
of commercial microwave links (MWL) to capture the spatio-temporal rainfall dynamics and thus 
improve rainfall-runoff modelling in urban areas. Specifically, we perform numerical experiments with 
virtual rainfall fields and compare the results of MWL rainfall reconstructions to those of rain gauge 
(RG) observations. For a case study of a small sewer system, we are able to show that MWL networks 
in urban areas are sufficiently dense to provide good information on spatio-temporal rainfall variability 
and can thus considerably improve pipe flow prediction and enable better control of discharges from 
urban areas. This is especially beneficial for high-intensity rainfalls, which usually have a high spatial 
variability that cannot be accurately captured by RG point measurements. 
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1 INTRODUCTION 

The ability to predict rainfall-runoff response of an urban catchment and thus to control discharges 
from urban areas is strongly dependent on a quality of rainfall data. Rainfall monitoring in urban areas 
places high demands for both spatial and temporal resolution, because urban subcatchments are 
small and runoff is generated extremely fast on the impervious areas.  

Conventional rain gauges (RG) can provide sufficient temporal resolution, however, as a point 
measurement, they cannot capture the rainfall spatial variability adequately (Berne et al. 2004). In 
addition, maintenance of a dense RG network is financially very demanding and local weather radars 
(LAWR) are not often available. In addition LAWR estimations are affected by many uncertainties such 
as radar shades (Thorndahl et al., 2011). Commercial microwave links (MWL) are novel source of 
rainfall information which could bridge this gap (Messer et al., 2006). They operate at frequencies 
where the raindrops are dominant source of attenuation and the MWL network is dense, especially in 
urban areas. However, although it seems a conceptually very interesting tool to improve urban 
hydrological applications, practical experience with MWL is currently lacking. 

In this manuscript, we therefore investigate how data from commercial telecommunication networks 
can improve urban drainage modeling. Specifically, we analyze in how far the better information about 
spatio-temporal rainfall variability improves pipe flow predictions. As the infrastructure to acquire MWL 
data from telecommunication operators is just currently being implemented, we here present the 
results based on realistic numerical experiments. Our analysis for a suburb of Prague, Czech 
Republic, shows that MWL networks in urban areas are sufficiently dense to provide good information 
on spatio-temporal rainfall variability. 

 

2 METHODS AND MATERIAL 

To assess the potential of MWL in urban drainage modelling, we compare runoff predictions from 
MWL to those using RG observations using rainfall-runoff model of a case study area located in a  
suburb of Prague, Czech Republic. The analysis is based on virtual drop size distribution (DSD) fields 
(Schleiss, 2012) which not only enables us to estimate rainfall intensities at any location, but also to 
calculate the expected rain-induced attenuation of a particular MWL. Thus we can simulate the 
reference rainfall intensities fallen over the catchment, point rainfall intensities as seen by RG and path 
averaged intensities as seen by MWL. To avoid overconfidence, we perturb the virtual data with 
realistic observation errors for both MWL and RG measurements. These are then propagated through 
a hydrodynamic rainfall-runoff model of a case study catchment with Monte Carlo simulations for all 
three rainfall datasets. 

The case study catchment has an area of 2.33 km2, with an impervious area of about 64 %, which is 
drained by a separate sewer system (Figure 1). 

 

Figure 1 – Study catchment and MWL network (left), the links displayed by the solid line were used for the rainfall 
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spatial reconstruction. Right: Disposition of the trunk sewers of the catchment, the flow conditions were evaluated 
at the outflow from the catchment depicted by black point. 

The Prague urban area is covered by a dense network of many hundred MWL. For the rainfall spatial 
reconstruction we selected 15 MWL (MINI-LINK, Ericsson, owned by T-Mobile) which are located in 
the direct vicinity of the catchment and operate at frequency 38 GHz. For the RG information, we used 
one RG as is common practice in Czech Republic (Figure 1). 

2.1 Reconstruction of space-time rainfall 

Reference rainfall fields: The reference areal rainfall intensities are simulated using a virtual drop 
size distribution (DSD) generator (Schleiss et al., 2012). The simulator estimates the medium and 
large scale rainfall variability (1-50 km) together with advection direction and velocity using radar data. 
The small scale variability (0.1-1 km) of the DSD is parameterized based on disdrometer data. 

Rain gauge observations: Virtual RG measurements are extracted from the reference rainfall at one 
particular cell of a rainfall field. RG measurement uncertainties are modelled according to Stransky et 
al. (2007), who investigated the uncertainty of tipping bucket rain gauges. RG is considered as 
statically and dynamically calibrated. The uncertainties due to losses caused by wind, wetting and 
evaporation and due to standard calibration procedure are sampled from the normal and log-normal 
PDFs with respect to the nature of the processes. 

MWL rainfall reconstruction: The attenuation of MWL signal caused by raindrops can be calculated 
using T-Matrix method (Mishchenko et.al., 1998). Knowing the DSD along each particular link (by 
extracting it from DSD field) we can calculate its specific attenuation (k, [dB/km]) at any time step: 

 
D

dDDNDk )(),(
)10ln(

1    (1). 

The extinction cross-section (σ(D, λ), [cm2]) describes how the raindrop of diameter D attenuates a 
signal of wavelength λ, N(D) denotes a density of raindrops of particular diamater. The product of 
these magnitudes is integrated over the whole range of raindrop diameters and transformed by the 
logarithmic constant to decibells. A simple power law relation (2) is then used to transform the specific 
attenuation (k, [dB/km]) into path averaged rainfall (Messer et al., 2006): 

 k=R    (2). 

Empirical parameters α and β are estimated for each link separately by fitting the power law estimated 
intensity of all events to the path-averaged one retrieved directly from the DSD fields. 

The additional uncertainty caused by quantization noise and baseline is considered as normally 
distributed. It has been parameterized on a comprehensive dataset from a real-world case study in the 
greater Zurich area (Rieckermann et al., 2009; Fencl, 2011). 

As a typical network contains MWLs of different lengths and orientations, the two dimensional rainfall 
spatial variability can be reconstructed to some extent from the joint analysis of nearby MWL. For 
simplicity, we used the algorithm by Goldshtein et al. (2009): Each i-th MWL is divided into Ki equal 
subsections of approximately 0.5 km. Each subsection is substituted by a data point Mj, located at its 
centre. Each link is thereafter represented as a set of Ki data points (Figure 2). The mean rainfall 
intensity of all points along a link has to correspond to the path-averaged intensity (3), however, it can 
be distributed unevenly. 
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The rainfall distribution between points (Mj, Mj+1, ..., Mj+ki) representing i-th link is approximated from 
data points belonging to neighboring links using the weighted mean under the constraint (3). The 
weighting function Wk is a function of an inverse square distance between approximated data point Mj 
and Mk data point of a neighboring link and of an uncertainty of MWL rainfall estimate of this particular 
MWL. That is, the closer is the Mj data point to the Mk data point of a neighboring link and the lower is 
the uncertainty of the estimates of this particular MWL, the stronger the weight is. 
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Figure 2 – Illustration of rainfall reconstruction from the observations of three neighboring MWL. Left: Initial equal 
distribution of rainfall among virtual data points for a given MWL topology. Middle: Distribution estimated for a first 
link in the first iteration (z). Right: The reconstructed rainfall distribution along the links after the last iteration (z). 

The procedure is applied to each link and iterated 20 times as suggested by Goldshtein, (2009). To 
obtain two dimensional reconstructed rainfall field the iterated rainfall intensities at data points Mi are 
transformed to the regular grid using weighted mean with weighting function Wj defined as a (4): 
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where lj denotes a distance between estimated grid point at location x, y and j-th data point 
considering radius of influence Гi =3 km (Goldshtein et al., 2009). 

2.2 Model inputs and realizations 

The reference rainfall fields are sampled every 1 minute and have a spatial resolution of 0.1 x 0.1 km2. 
The original size of a rainfall field is 20 x 20 km2. As the response of the catchment fundamentally 
depends on the rainfall characteristics, we generated three rain events: The first is a heavy convective 
rainfall event with low intermittency and duration of 30 min. The second has moderate convective 
rainfall of high intermittency and lasts 60 min. The last event has strong stratiform rainfall of low 
intermittency during 120 min. 

To eliminate the influence of positioning the rainfall field over the study area, the relative position of 
the catchment to the rainfall fields was repeatedly changed to cover 25 different locations uniformly 
distributed over the field. This finally resulted in a comprehensive set of 75 reference areal rainfalls of 
a size of 7 x 7 km2. From these, we computed RG data and MWL reconstructions. 

The uncertainty of RG measurements follows the suggestions of Stransky et al., (2007). Wind losses 
are calculated according to Sevruk (1996) considering wind velocities as a log-normal distributed 
(mean=2.078, sd=0.639), which corresponds to Czech standard wind activity. Thereafter they are 
sampled from an uniform PDF (± 1 % of calculated value). The uncertainty due to wetting is sampled 
for the first intervals of a rain event from a triangular PDF with maximum mode value 10 %. The 
evaporation losses are sampled from a triangular PDF (mode = 2 %, range (0 % - 4 %). And finally the 
uncertainty due to calibration is sampled from a normal PDF (mean= 0, sd = Rrg * 0.07). 

The uncertainty due to quantization noise and baseline separation is sampled for each MWL 
independently from a normal density function (mean=0, sd=1/6 dB). As received signal levels of 
operational MWL have resolution quantization of 1 dB, we round the final attenuation to integer values. 
An additional uncertainty of MWL measurement arises from power law approximation in Eq. 1. 

We use a standard calibrated hydrodynamic model for the rainfall-runoff simulations. It has been 
implemented in the commercial solver MIKE URBAN with the MOUSE computational engine.  
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The model is owned by the municipality of Prague and was constructed for the General drainage 
masterplan of Prague. As the differential-equation model is computationally very slow, the number of 
Monte Carlo simulations was restricted to n=25 repetitions for each data set. 

To guarantee a realistic evaluation, only those events were considered in the performance 
assessment, that are relevant from an engineering viewpoint, (Qmax,ref > 10 l/s) and those that produce 
considerable peak runoff (Qmax,est > 5 l/s). This was necessary, because the runoff is very sensitive to 
small changes in model parameters (e.g., pipe roughness coefficients) and discharge predictions at 
such low flows are not robust. 

2.3 Performance assessment 

To compare the different monitoring techniques, we compute relevant performance statistics of rainfall 
reconstruction and pipe flow at the outfall from the catchment (Figure 1) and compare them to those of 
the reference rainfall. For each rain event and realization (i.e., input data set for rainfall-runoff model), 
we compute a) the peak areal intensity (Rmax), and b) the rainfall volume (RV), considering only the 
rainfall cells restricted by the catchment area. From the corresponding runoff hydrograph we compute 
c) the outflow volume (QV), d) the peak flow at the catchment outlet (Qmax). For comparison, we use 
the relative error with regard to the reference value. Its mean represents the bias and its standard 
deviation the uncertainty due to both limited spatial information and limited accuracy of each 
measuring technique. 

In addition we evaluate the performance of the both monitoring techniques to capture the course of a 
runoff (the hydrograph shape) for each event and realization. The ability to reproduce the actual flow 
rate is evaluated as a mean absolute error (MAE) and root mean square deviation (RMSD), which is 
more sensitive to outliers, between reference and estimated values. To enable overall comparison we 
normalize both MAE and RMSE a) to the maximal reference flow rates (NMAE, resp. NRMSE): 

refQ

MAE
NMAE

max_

  (5), 

refQ
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   (6), 

and b) to the mean flow rates (CV(MAE), resp. CV(RMSE)): 
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The ability to reproduce trends in the flow rates is evaluated by Pearson’s correlation coefficient r: 
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To reveal the effect of a systematic temporal shift of runoff hydrographs we calculate MAE, RMSE and 
correlation between series shifted by one and two time steps in both directions. 

The mean of these measures represent expected error in the measurements and standard deviation 
the spread of an error. 

 

3 RESULTS 

In general, we found that the ability to predict runoff dynamics of a storm event at catchment of size of 
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few km2 depends especially on the estimation of areal rainfall intensity, its temporal dynamics and 
secondary on its spatial stratification. 

Regarding the spatio-temporal characteristics of the rainfall fields, we found that the MWL 
reconstruction in general very well captures rainfall intensities averaged over whole area of catchment 
(Table I) and correctly reproduces the location of peak rainfall intensities. However, it averages the 
local maxima and minima. As we consider only uncertainties due quantization noise, baseline 
separation and A-R power law relationship (2), the uncertainties of MWL rainfall estimates are almost 
independent of rainfall intensities, because the parameter β of a power law (2) almost equals 1 at 
38 GHz frequencies (Berne, 2007). 

In contrast to MWL, a RG can capture rainfall intensity maxima and minima in its direct vicinity, 
however, the areal intensity estimates are less reliable (Table I). This applies especially to high 
intensities, because the rainfall spatial variability is in general higher during periods of strong rainfall 
and RG, as a point measurement, cannot reflect the spatial distribution of rainfall. In addition, the 
accuracy of point estimates from tipping bucket RG decreases with growing intensity. Therefore, the 
areal intensities of light rainfalls are, on average, better reproduced by RGs in contrast to the MWL 
network, which, in contrast, better reproduces heavy rainfalls. 

Regarding the performance to predict sewer discharges, the threshold for evaluating the rainfall 
induced flows (Qmax ref> 10 l/s and Qmax est> 5 l/s) was exceeded by 40 of the 75 rain events. For these, 
we found that the MWL-based flow predictions match the runoff from reference rainfall better during 
high intensity rainfall periods and those from RG data during low intensity periods (Figure 4, 5 ,6).  

Although MWL-based flow volume and peak flow predictions have a larger bias, this occurs mostly 
during periods of low or moderate flows, where absolute deviations are not critical. In contrast, the 
standard deviation of the results is considerably lower than that from RG (Table I). 

 

Table I – Results of the performance assessment. Colum 1 and 2 compare the statistics of the measurements to 
those of the reference rainfall. Column 3 and 4 compare the resulting peak flows and flow volumes. The standard 

deviation is given in brackets. 

 RV – mean 
rel. error 

Rmax – mean 
rel. error 

QV – mean rel. 
error 

Qmax – 
mean rel. 

error 

RG 4 %  (14 %) 34 %  (27 %) 6 %  (26 %) 6  (26 %) 

MWL -3 %  (10 %) 0 %  (10 %) -12 %  (11 %) -9  (11 %) 

 

 

Figure 4 – Relative error for different peak flows (left) and outflow volumes (right). 
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Figure 5 – Outflow dynamics for high intensity (left) and low intensity rainfall (right). The inacurracy of MWL 
rainfall estimation technique causes high relative deviations in MWL estimates especially during low intensity 

rainfalls. However, in contrast to RG, MWL reflect the rainfall spatial variability and thus capture better the outflow 
dynamics. 

The comparison of hydrographs revealed that MWL-based predictions capture in average the pipe 
flow temporal dynamics better than RG estimates (Table II, Figure 6, 7). Similarly to outflow volume 
and peak flow predictions the MWL perform better during periods of high flow whereas the RG during 
low flow periods. This is because for high intensity rainfalls the uncertainties due to inability of RG to 
capture rainfall spatial variability outweighs the uncertainties due to inaccuracy of a measuring device 
itself which is higher by MWL. 

Interestingly, the MWL performs better (considering NRMSE, CV(RMSE) and correlation) when MWL 
time series are shifted one minute backwards. On the other hand the RG performs better when the RG 
series are not shifted or (considering CV(RMSE)) when shifted one minute forward. This is probably 
caused by rainfalls coming from east where the density of the MWL is lower and rainfall reaches first 
the RG. In addition, the eastern part of catchment has high percentage of impervious areas and since 
it is relatively close to outfall of the catchment it affects the outflow dynamics significantly. However, 
the comparison of MWL and RG observation clearly shows that despite of a shift the MWL performs 
better RG. 

Unfortunately, although we took great efforts to assess measurement uncertainties, our results do not 
yet include the effect of antenna wetting for the MWL observations. On the one hand, this might 
increase both systematic and random observation errors, especially during high intensity rainfalls. On 
the other hand, MWL networks are often extremely dense in urban areas, which should allow us to 
improve the accuracy of MWL observations by considering many links, which should contain 
redundant information. 

 

Table II – Results of the flow rate performance assessment for events and realizations as the averages of 
respective statistical measures. The standard deviation is given in brackets. 

T. shift 
[min] 

  -2 -1 0 1 2 

NMAE 
RG 7.8 %  (5.8 %) 7.2 %  (6.1 %) 6.9 %  (6.3 %) 7 %  (6.5 %) 7.4 %  (6.5 %) 

MWL 5.5 %  (5.2 %) 4.9 %  (5.2 %) 4.8 %  (5.2 %) 5.2 %  (5 %) 6 %  (4.8 %) 

NRMSE  
RG 13.9 %  (8.7 %) 12.8 %  (9.2 %) 12 %  (9.6 %) 11.9 %  (9.7 %) 12.4 %  (9.7 %) 

MWL 9 %  (7.9 %) 8.4 %  (8.1 %) 8.8 %  (8.2 %) 10.1 %  (7.8 %) 11.8 %  (7.5 %) 

CV(MSE)  
RG 0.294  (0.161) 0.268  (0.169) 0.255  (0.178) 0.259  (0.181) 0.275  (0.18) 

MWL 0.205  (0.169) 0.183  (0.174) 0.177  (0.175) 0.194  (0.168) 0.228  (0.16) 

CV(RMSE)  
RG 0.545  (0.299) 0.495  (0.301) 0.461  (0.304) 0.453  (0.299) 0.473  (0.29) 

MWL 0.349  (0.287) 0.322  (0.292) 0.336  (0.292) 0.391  (0.281) 0.46  (0.272) 

corr. 
RG 0.931  (0.099) 0.939  (0.106) 0.942  (0.114) 0.94  (0.123) 0.933  (0.132) 

MWL 0.972  (0.064) 0.975  (0.065) 0.971  (0.067) 0.96  (0.069) 0.945  (0.073) 
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Figure 6 – NMAE (left) and NRMSE (right) for different peak flows. 

 

 

Figure 7 – CV(MAE) (left) and CV(RMSE) (right) for different mean flows. 

 

4 CONCLUSION 

In our study, we found that better information from Telecommunication Microwave Links about spatio-
temporal rainfall variability has a potential to improve pipe flow predictions compared to those based 
only on traditional RG observations. Our results show, that, first, MWL rainfall reconstruction very well 
reproduces areal averaged rainfall intensities but the path-average information smoothes the local 
maxima and minima. Interestingly, although MWL contain these fundament biases, we found, second, 
that they reproduce the runoff dynamics better than point RG measurements, which simply lack the 
spatial rainfall information. The reliability of point measurement is especially low for high intensity 
convective rainfalls with their higher spatial variability. Third, we find that runoff from MWL 
observations better reproduces initial runoff. This is, because they can capture rainfall intensities over 
the whole area of catchment and thus better observe the onset of precipitation.  This could greatly 
improve the real time control of drainage systems. In the future, the MWL could complement RG point 
measurements with the missing spatial rainfall information. Thus, they can reduce input uncertainties 
in rainfall-runoff modeling, improve discharge predictions and enable better control of the discharges 
from urban areas. 
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