8 research outputs found

    Human immunodeficiency virus, type 1 protease substrate specificity is limited by interactions between substrate amino acids bound in adjacent enzyme subsites

    Get PDF
    The specificity of the retroviral protease is determined by the ability of substrate amino acid side chains to bind into eight individual subsites within the enzyme. Although the subsites are able to act somewhat independently in selection of amino acid side chains that fit into each pocket, significant interactions exist between individual subsites that substantially limit the number of clearable amino acid sequences. The substrate peptide binds within the enzyme in an extended anti-parallel ÎČ sheet conformation with substrate amino acid side chains adjacent in the linear sequence extending in opposite directions in the enzyme-substrate complex. From this geometry, we have defined both cis and trans steric interactions, which have been characterized by a steady state kinetic analysis of human immunodeficiency virus, type-1 protease using a series of peptide substrates that are derivatives of the avian leukosis/sarcoma virus nucleocapsid-protease cleavage site. These peptides contain both single and double amino acid substitutions in seven positions of the minimum length substrate required by the retroviral protease for specific and efficient cleavage. Steady state kinetic data from the single amino acid substituted peptides were used to predict effects on protease-catalyzed cleavage of corresponding double substituted peptide substrates. The calculated Gibbs' free energy changes were compared with actual experimental values in order to determine how the fit of a substrate amino acid in one subsite influences the fit of amino acids in adjacent subsites. Analysis of these data shows that substrate specificity is limited by steric interactions between pairs of enzyme subsites. Moreover, certain enzyme subsites are relatively tolerant of substitutions in the substrate and exert little effect on adjacent subsites, whereas others are more restrictive and have marked influence on adjacent cis and trans subsites

    Programming the Rous sarcoma virus protease to cleave new substrate sequences

    Get PDF
    The Rous sarcoma virus protease displays a high degree of specificity and catalyzes the cleavage of only a limited number of amino acid sequences. This specificity is governed by interactions between side chains of eight substrate amino acids and eight corresponding subsite pockets within the homodimeric enzyme. We have examined these complex interactions in order to learn how to introduce changes into the retroviral protease (PR) that direct it to cleave new substrates. Mutant enzymes with altered substrate specificity and wild-type or greater catalytic rates have been constructed previously by substituting single key amino acids in each of the eight enzyme subsites with those residues found in structurally related positions of human immunodeficiency virus (HIV)-1 PR. These individual amino acid substitutions have now been combined into one enzyme, resulting in a highly active mutant Rous sarcoma virus (RSV) protease that displays many characteristics associated with the HIV-1 enzyme. The hybrid protease is capable of catalyzing the cleavage of a set of HIV-1 viral polyprotein substrates that are not recognized by the wild-type RSV enzyme. Additionally, the modified PR is inhibited completely by the HIV-1 PR-specific inhibitor KNI-272 at concentrations where wild-type RSV PR is unaffected. These results indicate that the major determinants that dictate RSV and HIV-1 PR substrate specificity have been identified. Since the viral protease is a homodimer, the rational design of enzymes with altered specificity also requires a thorough understanding of the importance of enzyme symmetry in substrate selection. We demonstrate here that the enzyme homodimer acts symmetrically in substrate selection with each enzyme subunit being capable of recognizing both halves of a peptide substrate equally

    Mutational analysis of the substrate binding pockets of the Rous sarcoma virus and human immunodeficiency virus-1 proteases

    Get PDF
    Mutations, designed by analysis of the crystal structures of Rous sarcoma virus (RSV) and human immunodeficiency virus type 1 (HIV-1) protease (PR), were introduced into the substrate binding pocket of RSV PR. The mutations substituted nonconserved residues of RSV PR, located within 10 Å of the substrate, for those in structurally equivalent positions of HIV-1 PR. Changes in the activity of purified mutants were detected in vitro by following cleavage of synthetic peptides representing wild-type and modified RSV and HIV-1 gag and pol polyprotein cleavage sites. Substituting threonine for valine 104 (V104T), S107N, I44V, Q63M or deletion of residues 61-63 produced enzymes that were 2.5-7-fold more active than the wild type RSV PR. Substituting I42D, M73V, and A100L produced enzymes with lower activity, whereas a mutant that included both M73V and A100L was as active as wild type. Several substitutions altered the specificity for substrate. These include I42D and I44V, which contribute to the S2 and S2' subsites. These proteins exhibited HIV-1 PR specificity for P2- or P2'-modified peptide substrates but unchanged specificity with P4-, P3-, P1-, P1'-, and P3'- modified substrates. Changes in specificity in the S4 subsite were detected by deletion of residues 61-63. These results confirm the hypothesis that the subsites of the substrate binding pocket of the retroviral protease are capable of acting independently in the selection of substrate amino acids

    Search for one large extra dimension with the DELPHI detector at LEP

    Get PDF
    Single photons detected by the DELPHI experiment at LEP2 in the years 1997-2000 are reanalysed to investigate the existence of a single extra dimension in a modified ADD scenario with slightly warped large extra dimensions. The data collected at centre-of-mass energies between 180 and 209 GeV for an integrated luminosity of similar to 650 pb(-1) agree with the predictions of the Standard Model and allow a limit to be set on graviton emission in one large extra dimension. The limit obtained on the fundamental mass scale M-D is 1.69 TeV/c(2) at 95% CL, with an expected limit of 1.71 TeV/c(2)

    Combining heavy flavour electroweak measurements at LEP

    No full text

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore