62 research outputs found

    Effect of non-linearity in predicting doppler waveforms through a novel model

    Get PDF
    BACKGROUND: In pregnancy, the uteroplacental vascular system develops de novo locally in utero and a systemic haemodynamic & bio-rheological alteration accompany it. Any abnormality in the non-linear vascular system is believed to trigger the onset of serious morbid conditions like pre-eclampsia and/or intrauterine growth restriction (IUGR). Exact Aetiopathogenesis is unknown. Advancement in the field of non-invasive doppler image analysis and simulation incorporating non-linearities may unfold the complexities associated with the inaccessible uteroplacental vessels. Earlier modeling approaches approximate it as a linear system. METHOD: We proposed a novel electrical model for the uteroplacental system that uses MOSFETs as non-linear elements in place of traditional linear transmission line (TL) model. The model to simulate doppler FVW's was designed by including the inputs from our non-linear mathematical model. While using the MOSFETs as voltage-controlled switches, a fair degree of controlled-non-linearity has been introduced in the model. Comparative analysis was done between the simulated data and the actual doppler FVW's waveforms. RESULTS & DISCUSSION: Normal pregnancy has been successfully modeled and the doppler output waveforms are simulated for different gestation time using the model. It is observed that the dicrotic notch disappears and the S/D ratio decreases as the pregnancy matures. Both these results are established clinical facts. Effects of blood density, viscosity and the arterial wall elasticity on the blood flow velocity profile were also studied. Spectral analysis on the output of the model (blood flow velocity) indicated that the Total Harmonic Distortion (THD) falls during the mid-gestation. CONCLUSION: Total harmonic distortion (THD) is found to be informative in determining the Feto-maternal health. Effects of the blood density, the viscosity and the elasticity changes on the blood FVW are simulated. Future works are expected to concentrate mainly on improving the load with respect to varying non-linear parameters in the model. Heart rate variability, which accounts for the vascular tone, should also be included. We also expect the model to initiate extensive clinical or experimental studies in the near future

    Identification of Inappropriately Reprogrammed Genes by Large-Scale Transcriptome Analysis of Individual Cloned Mouse Blastocysts

    Get PDF
    Although cloned embryos generated by somatic/embryonic stem cell nuclear transfer (SECNT) certainly give rise to viable individuals, they can often undergo embryonic arrest at any stage of embryogenesis, leading to diverse morphological abnormalities. In an effort to gain further insights into reprogramming and the properties of SECNT embryos, we performed a large-scale gene expression profiling of 87 single blastocysts using GeneChip microarrays. Sertoli cells, cumulus cells, and embryonic stem cells were used as donor cells. The gene expression profiles of 87 blastocysts were subjected to microarray analysis. Using principal component analysis and hierarchical clustering, the gene expression profiles were clearly classified into 3 clusters corresponding to the type of donor cell. The results revealed that each type of SECNT embryo had a unique gene expression profile that was strictly dependent upon the type of donor cells, although there was considerable variation among the individual profiles within each group. This suggests that the reprogramming process is distinct for embryos cloned from different types of donor cells. Furthermore, on the basis of the results of comparison analysis, we identified 35 genes that were inappropriately reprogrammed in most of the SECNT embryos; our findings demonstrated that some of these genes, such as Asz1, Xlr3a and App, were appropriately reprogrammed only in the embryos with a transcriptional profile that was the closest to that of the controls. Our findings provide a framework to further understand the reprogramming in SECNT embryos

    Screen-based media use clusters are related to other activity behaviours and health indicators in adolescents

    Get PDF
    Background: Screen-based media (SBM) occupy a considerable portion of young peoples’ discretionary leisure time. The aim of this paper was to investigate whether distinct clusters of SBM use exist, and if so, to examine the relationship of any identified clusters with other activity/sedentary behaviours and physical and mental health indicators.Methods: The data for this study come from 643 adolescents, aged 14 years, who were participating in the longitudinal Western Australian Pregnancy Cohort (Raine) Study through May 2003 to June 2006. Time spent on SBM, phone use and reading was assessed using the Multimedia Activity Recall for Children and Adults. Height, weight, muscle strength were measured at a clinic visit and the adolescents also completed questionnaires on their physical activity and psychosocial health. Latent class analysis (LCA) was used to analyse groupings of SBM use.Results: Three clusters of SBM use were found; C1 ‘instrumental computer users’ (high email use, general computer use), C2 ‘multi-modal e-gamers’ (both high console and computer game use) and C3 ‘computer e-gamers’ (high computer game use only). Television viewing was moderately high amongst all the clusters. C2 males took fewer steps than their male peers in C1 and C3 (-13,787/week, 95% CI: -4619 to -22957, p = 0.003 and -14,806, 95% CI: -5,306 to -24,305, p = 0.002) and recorded less MVPA than the C1 males (-3.5 h, 95% CI: -1.0 to -5.9, p = 0.005). There was no difference in activity levels between females in clusters C1 and C3.Conclusion: SBM use by adolescents did cluster and these clusters related differently to activity/sedentary behaviours and both physical and psychosocial health indicators. It is clear that SBM use is not a single construct and future research needs to take consideration of this if it intends to understand the impact SBM has on health

    Aberrant epigenetic changes and gene expression in cloned cattle dying around birth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aberrant reprogramming of donor somatic cell nuclei may result in many severe problems in animal cloning. To assess the extent of abnormal epigenetic modifications and gene expression in clones, we simultaneously examined DNA methylation, histone H4 acetylation and expression of six genes (<it>ÎČ-actin</it>, <it>VEGF</it>, <it>oct4</it>, <it>TERT</it>, <it>H19 </it>and <it>Igf2</it>) and a repetitive sequence (<it>art2</it>) in five organs (heart, liver, spleen, lung and kidney) from two cloned cattle groups that had died at different stages. In the ED group (early death, n = 3), the cloned cattle died in the perinatal period. The cattle in the LD group (late death, n = 3) died after the perinatal period. Normally reproduced cattle served as a control group (n = 3).</p> <p>Results</p> <p>Aberrant DNA methylation, histone H4 acetylation and gene expression were observed in both cloned groups. The ED group showed relatively fewer severe DNA methylation abnormalities (p < 0.05) but more abnormal histone H4 acetylations (p < 0.05) and more abnormal expression (p < 0.05) of the selected genes compared to the LD group. However, our data also suggest no widespread gene expression abnormalities in the organs of the dead clones.</p> <p>Conclusion</p> <p>Deaths of clones may be ascribed to abnormal expression of a very limited number of genes.</p

    The Context of Current Content Analysis of Gender Roles: An Introduction to a Special Issue

    Get PDF
    The aim of this paper is to provide context for the quantitative content analyses of gender roles that are to be included in both parts of this special issue. First, a timeline of historical uses of the content analysis methodology is presented. Second, research objectives that frequently drive content analysis of gender roles are described; these include: to support feminist claims, to compare media with real life, to predict effects on audiences, and to detect effects of media producers on content. Third, previous content analyses published in Sex Roles and other gender-focused journals are reviewed and categorized in terms of medium, genre, time span, gender, and nationality. Finally, contributions of each of the articles in this special issue are outlined

    Evidence for positive selection in the gene fruitless in Anastrepha fruit flies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many genes involved in the sex determining cascade have indicated signals of positive selection and rapid evolution across different species. Even though <it>fruitless </it>is an important gene involved mostly in several aspects of male courtship behavior, the few studies so far have explained its high rates of evolution by relaxed selective constraints. This would indicate that a large portion of this gene has evolved neutrally, contrary to what has been observed for other genes in the sex cascade.</p> <p>Results</p> <p>Here we test whether the <it>fruitless </it>gene has evolved neutrally or under positive selection in species of <it>Anastrepha </it>(Tephritidae: Diptera) using two different approaches, a long-term evolutionary analysis and a populational genetic data analysis. The first analysis was performed by using sequences of three species of <it>Anastrepha </it>and sequences from several species of <it>Drosophila </it>using the ratio of nonsynonymous to synonymous rates of evolution in PAML, which revealed that the <it>fru </it>region here studied has evolved by positive selection. Using Bayes Empirical Bayes we estimated that 16 sites located in the connecting region of the <it>fruitless </it>gene were evolving under positive selection. We also investigated for signs of this positive selection using populational data from 50 specimens from three species of <it>Anastrepha </it>from different localities in Brazil. The use of standard tests of selection and a new test that compares patterns of differential survival between synonymous and nonsynonymous in evolutionary time also provide evidence of positive selection across species and of a selective sweep for one of the species investigated.</p> <p>Conclusions</p> <p>Our data indicate that the high diversification of <it>fru </it>connecting region in <it>Anastrepha </it>flies is due at least in part to positive selection, not merely as a consequence of relaxed selective constraint. These conclusions are based not only on the comparison of distantly related taxa that show long-term divergence time, but also on recently diverged lineages and suggest that episodes of adaptive evolution in <it>fru </it>may be related to sexual selection and/or conflict related to its involvement in male courtship behavior.</p

    Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns

    Get PDF
    The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications, pluripotent cells, including both embryonic stem cells and adult stem cells, have been proposed for cell replacement therapy for a number of human diseases and disorders, including Alzheimer's, Parkinson's, spinal cord injury and diabetes. One challenge in their usage for such therapies is understanding the mechanisms that allow the maintenance of pluripotency and controlling the specific differentiation into required functional target cells. Because of regulatory restrictions and biological feasibilities, there are many crucial investigations that are just impossible to perform using pluripotent stem cells (PSCs) from humans (for example, direct comparisons among panels of inbred embryonic stem cells from prime embryos obtained from pedigreed and fertile donors; genomic analysis of parent versus progeny PSCs and their identical differentiated tissues; intraspecific chimera analyses for pluripotency testing; and so on). However, PSCs from nonhuman primates are being investigated to bridge these knowledge gaps between discoveries in mice and vital information necessary for appropriate clinical evaluations. In this review, we consider the mRNAs and novel genes with unique expression and imprinting patterns that were discovered using systems biology approaches with primate pluripotent stem and germ cells

    Detecting macroecological patterns in bacterial communities across independent studies of global soils

    Get PDF
    This study and participants were funded in part by ERC Adv grant 26055290 (KSR, WHvdP); BBSRC David Phillips Fellowship (BB/L02456X/1) (FTDV); ERC Grant Agreements 242658 [BIOCOM] and 647038 [BIODESERT] (FTM); the European Regional Development Fund (Centre of Excellence EcolChange) (JD); Yorkshire Agricultural Society, Nafferton Ecological Farming Group, and the Northumbria University Research Development Fund (CHO); BBSRC Training Grant (BB/K501943/1) (CH); Wallenberg Academy Fellowship (KAW 2012.0152), Formas (214-2011-788) and VetenskapsrÄdet (612-2011-5444) (ED); the Glastir Monitoring & Evaluation Programme (Contract reference: C147/2010/11) and the full support of the GMEP team on the Glastir project (DLJ, SC, DAR)

    Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas

    Get PDF
    RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut
    • 

    corecore