11 research outputs found

    Improvements to Wire Bundle Thermal Modeling for Ampacity Determination

    Get PDF
    Determining current carrying capacity (ampacity) of wire bundles in aerospace vehicles is critical not only to safety but also to efficient design. Published standards provide guidance on determining wire bundle ampacity but offer little flexibility for configurations where wire bundles of mixed gauges and currents are employed with varying external insulation jacket surface properties. Thermal modeling has been employed in an attempt to develop techniques to assist in ampacity determination for these complex configurations. Previous developments allowed analysis of wire bundle configurations but was constrained to configurations comprised of less than 50 elements. Additionally, for vacuum analyses, configurations with very low emittance external jackets suffered from numerical instability in the solution. A new thermal modeler is presented allowing for larger configurations and is not constrained for low bundle infrared emissivity calculations. Formulation of key internal radiation and interface conductance parameters is discussed including the effects of temperature and air pressure on wire to wire thermal conductance. Test cases comparing model-predicted ampacity and that calculated from standards documents are presented

    STS-114 Engine Cut-off Sensor Anomaly Technical Consultation Report

    Get PDF
    The NESC consultation team participated in real-time troubleshooting of the Main Propulsion System (MPS) Engine Cutoff (ECO) sensor system failures during STS-114 launch countdown. The team assisted with External Tank (ET) thermal and ECO Point Sensor Box (PSB) circuit analyses, and made real-time inputs to the Space Shuttle Program (SSP) problem resolution teams. Several long-term recommendations resulted. One recommendation was to conduct cryogenic tests of the ECO sensors to validate, or disprove, the theory that variations in circuit impedance due to cryogenic effects on swaged connections within the sensor were the root cause of STS-114 failures

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Extensive Phenotyping of Individuals at Risk for Familial Interstitial Pneumonia Reveals Clues to the Pathogenesis of Interstitial Lung Disease

    No full text
    RationaleAsymptomatic relatives of patients with familial interstitial pneumonia (FIP), the inherited form of idiopathic interstitial pneumonia, carry increased risk for developing interstitial lung disease.ObjectivesStudying these at-risk individuals provides a unique opportunity to investigate early stages of FIP pathogenesis and develop predictive models of disease onset.MethodsSeventy-five asymptomatic first-degree relatives of FIP patients (mean age, 50.8 yr) underwent blood sampling and high-resolution chest computed tomography (HRCT) scanning in an ongoing cohort study; 72 consented to bronchoscopy with bronchoalveolar lavage (BAL) and transbronchial biopsies. Twenty-seven healthy individuals were used as control subjects.Measurements and main resultsEleven of 75 at-risk subjects (14%) had evidence of interstitial changes by HRCT, whereas 35.2% had abnormalities on transbronchial biopsies. No differences were noted in inflammatory cells in BAL between at-risk individuals and control subjects. At-risk subjects had increased herpesvirus DNA in cell-free BAL and evidence of herpesvirus antigen expression in alveolar epithelial cells (AECs), which correlated with expression of endoplasmic reticulum stress markers in AECs. Peripheral blood mononuclear cell and AEC telomere length were shorter in at-risk individuals than healthy control subjects. The minor allele frequency of the Muc5B rs35705950 promoter polymorphism was increased in at-risk subjects. Levels of several plasma biomarkers differed between at-risk subjects and control subjects, and correlated with abnormal HRCT scans.ConclusionsEvidence of lung parenchymal remodeling and epithelial dysfunction was identified in asymptomatic individuals at risk for FIP. Together, these findings offer new insights into the early pathogenesis of idiopathic interstitial pneumonia and provide an ongoing opportunity to characterize presymptomatic abnormalities that predict progression to clinical disease

    Reductive Biotransformation of Benzaldehyde Derivatives by Baker's Yeast in Non-Conventional Media:Effect of Substrate Hydrophobicity on the Biocatalytic Reaction

    Get PDF
    International audienceWe provide a detailed geomorphological and spectrophotometric analysis of the circular niches located on the Seth region of 67P using OSIRIS images. The features can be related to landslide events that occurred on 67P and shaped its surface, as the recent Aswan cliff collapse detected in the same region. We therefore provide an analysis of the area pre- and post-perihelion suggesting that no specific changes have been observed. To assess this, after performing a geomorphological map of the area that allows us to identify different terrain units, we computed the boulders cumulative size frequency distribution (SFD) of the niches, before and after the perihelion passage. The niches SFDs are characterized by a similar trend with two different power-law indices within the same deposit: lower power-law value (between −2.3 and −2.7) for boulders smaller than 5 m and steeper power-law value (between −4.7 and −5.0) for boulders larger than 5 m. These trends suggest that smaller boulders have evolved and progressively have been depleted (lower power-law index), while bigger boulders are more representative of the event that generated the deposit and are less degraded. Then, we perform the spectrophotometric analysis of this region comparing pre- and post-perihelion results. We found colour changes within the area, in particular brighter patches related to the presence of exposed water ice mixed to the refractory materials have been detected in the post-perihelion images

    Extensive Phenotyping of Individuals at Risk for Familial Interstitial Pneumonia Reveals Clues to the Pathogenesis of Interstitial Lung Disease

    No full text
    Rationale: Asymptomatic relatives of patients with familial interstitial pneumonia (FIP), the inherited form of idiopathic interstitial pneumonia, carry increased risk for developing interstitial lung disease. Objectives: Studying these at-risk individuals provides a unique opportunity to investigate early stages of FIP pathogenesis and develop predictive models of disease onset. Methods: Seventy-five asymptomatic first-degree relatives of FIP patients (mean age, 50.8 yr) underwent blood sampling and high-resolution chest computed tomography (HRCT) scanning in an ongoing cohort study; 72 consented to bronchoscopy with bronchoalveolar lavage (BAL) and transbronchial biopsies. Twenty-seven healthy individuals were used as control subjects. Measurements and Main Results: Eleven of 75 at-risk subjects (14%) had evidence of interstitial changes by HRCT, whereas 35.2% had abnormalities on transbronchial biopsies. No differences were noted in inflammatory cells in BAL between at-risk individuals and control subjects. At-risk subjects had increased herpesvirus DNA in cell-free BAL and evidence of herpesvirus antigen expression in alveolar epithelial cells (AECs), which correlated with expression of endoplasmic reticulum stress markers in AECs. Peripheral blood mononuclear cell and AEC telomere length were shorter in at-risk individuals than healthy control subjects. The minor allele frequency of the Muc5B rs35705950 promoter polymorphism was increased in at-risk subjects. Levels of several plasma biomarkers differed between at-risk subjects and control subjects, and correlated with abnormal HRCT scans. Conclusions: Evidence of lung parenchymal remodeling and epithelial dysfunction was identified in asymptomatic individuals at risk for FIP. Together, these findings offer new insights into the early pathogenesis of idiopathic interstitial pneumonia and provide an ongoing opportunity to characterize presymptomatic abnormalities that predict progression to clinical disease

    Modelling of the outburst on 2015 July 29 observed with OSIRIS cameras in the Southern hemisphere of comet 67P/Churyumov–Gerasimenko

    Get PDF
    International audienceImages of the nucleus and the coma (gas and dust) of comet 67P/Churyumov– Gerasimenko have been acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) cameras since 2014 March using both the wide-angle camera and the narrow-angle camera (NAC). We use images from the NAC camera to study a bright outburst observed in the Southern hemisphere on 2015 July 29. The high spatial resolution of the NAC is needed to localize the source point of the outburst on the surface of the nucleus. The heliocentric distance is 1.25 au and the spacecraft–comet distance is 186 km. Aiming to better understand the physics that led to the outgassing, we used the Direct Simulation Monte Carlo method to study the gas flow close to the nucleus and the dust trajectories. The goal is to understand the mechanisms producing the outburst. We reproduce the opening angle of the outburst in the model and constrain the outgassing ratio between the outburst source and the local region. The outburst is in fact a combination of both gas and dust, in which the active surface is approximately 10 times more active than the average rate found in the surrounding areas. We need a number of dust particles 7.83 × 1011 to 6.90 × 1015 (radius 1.97–185 ÎŒm), which correspond to a mass of dust (220–21) × 103 kg
    corecore