183 research outputs found

    Racial Disparities in Breast Cancer Survival: The Mediating Effects of Macro-Social Context and Social Network Factors

    Full text link
    ABSTRACT This study attempts to clarify the associations between macro-social and social network factors and continuing racial disparities in breast cancer survival. The study improves on prior methodologies by using a neighborhood disadvantage measure that assesses both economic and social disadvantage and an ego-network measurement tool that assesses key social network characteristics. Our population-based sample included 786 breast cancer patients (nHWhite=388; nHBlack=398) diagnosed during 2005-2008 in Chicago, IL. The data included census-derived macro-social context, self-reported social network, self-reported demographic and medically abstracted health measures. Mortality data from the National Death Index (NDI) were used to determine 5-year survival. Based on our findings, neighborhood concentrated disadvantage was negatively associated with survival among nHBlack and nHWhite breast cancer patients. In unadjusted models, social network size, network density, practical support, and financial support were positively associated with 5-year survival. However, in adjusted models only practical support was associated with 5-year survival. Our findings suggest that the association between network size and breast cancer survival is sensitive to scaling of the network measure, which helps to explain inconsistencies in past findings. Social networks of nHWhites and nHBlacks differed in size, social support dimensions, network density, and geographic proximity. Among social factors, residence in disadvantaged neighborhoods and unmet practical support explained some of the racial disparity in survival. Differences in late stage diagnosis and comorbidities between nHWhites and nHBlacks also explained some of the racial disparity in survival. Our findings highlight the relevance of social factors, both macro and inter-personal in the racial disparity in breast cancer survival. Findings suggest that reduced survival of nHBlack women is in part due to low social network resources and residence in socially and economically deprived neighborhoods. Our findings indicate that, to improve survival among breast cancer patients, policies need to focus on continued improvement of access to care and reduction of racially patterned social and economic hardship. Additionally, our findings support the need for health care providers to assess social support resources of breast cancer patients at the time of diagnosis

    Social Support Needs of Minority Breast Cancer Patients: Significance of Racial Homogeneity and Kin Composition of Social Networks

    Full text link
    Social support from family and friends assists breast cancer patients navigate a life crisis, but more needs to be understood about specific social network characteristics that can benefit breast cancer patients. To address this need, the primary aim of this study was to identify social network factors that facilitate or reduce social support. Given racially patterned gaps in social support among breast cancer patients, a secondary goal was to identify network characteristics that are linked to gaps in support. We examined these research questions using data from a sample of 915 breast cancer patients (NHWhite=373; NHBlack=377; Hispanic=165) and 4,021 of their network members. To improve on prior research, we collected detailed social network data using a personal-network measurement tool and assessed needed and received support on five support components. Study findings identified specific network characteristics that facilitate these social support components. Network size was associated with increased practical, informational, emotional, and spiritual support. Network density was associated with increased practical support. Racial homogeneity in networks were associated with reduced informational support while a higher number of daughters in support networks was associated with increased emotional support. Compared to NHWhite patients, NHBlack patients were more likely to experience inadequate practical and financial support. Additionally, compared to NHWhite patients, Hispanic patients were more likely to experience inadequate informational and emotional support. The study found that network density, racial homogeneity, and gender composition of NHWhite, NHBlack and Hispanic social networks contributed to the racially patterned disparities in social support. Findings in this study could inform interventions aimed at increasing social support through greater mobilization of existing network ties as well as policy-driven, formal community building initiatives aimed at replicating benefits of naturally occurring networks

    Reducing the Read Noise of the James Webb Space Telescope Near Infrared Spectrograph Detector Subsystem

    Get PDF
    We describe a Wiener optimal approach to using the reference output and reference pixels that are built into Teledyne's HAWAII-2RG detector arrays. In this way, we are reducing the total noise per approximately 1000 second 88 frame up-the-ramp dark integration from about 6.5 e- rms to roughly 5 e- rms. Using a principal components analysis formalism, we achieved these noise improvements without altering the hardware in any way. In addition to being lower, the noise is also cleaner with much less visible correlation. For example, the faint horizontal banding that is often seen in HAWAII-2RG images is almost completely removed. Preliminary testing suggests that the relative gains are even higher when using non flight grade components. We believe that these techniques are applicable to most HAWAII-2RG based instruments

    Atmospheric Circulation of Eccentric Hot Neptune GJ436b

    Full text link
    GJ436b is a unique member of the transiting extrasolar planet population being one of the smallest and least irradiated and possessing an eccentric orbit. Because of its size, mass and density, GJ436b could plausibly have an atmospheric metallicity similar to Neptune (20-60 times solar abundances), which makes it an ideal target to study the effects of atmospheric metallicity on dynamics and radiative transfer in an extrasolar planetary atmosphere. We present three-dimensional atmospheric circulation models that include realistic non-gray radiative transfer for 1, 3, 10, 30, and 50 times solar atmospheric metallicity cases of GJ436b. Low metallicity models (1 and 3 times solar) show little day/night temperature variation and strong high-latitude jets. In contrast, higher metallicity models (30 and 50 times solar) exhibit day/night temperature variations and a strong equatorial jet. Spectra and light curves produced from these simulations show strong orbital phase dependencies in the 50 times solar case and negligible variations with orbital phase in the 1 times solar case. Comparisons between the predicted planet/star flux ratio from these models and current secondary eclipse measurements support a high metallicity atmosphere (30-50 times solar abundances) with disequilibrium carbon chemistry at play for GJ436b. Regardless of the actual atmospheric composition of GJ436b, our models serve to illuminate how metallicity influences the atmospheric circulation for a broad range of warm extrasolar planets.Comment: 25 pages, 13 figure

    The star formation histories of low surface brightness galaxies

    Get PDF
    We have performed deep imaging of a diverse sample of 26 low surface brightness galaxies (LSBGs) in the optical and the near-infrared. Using stellar population synthesis models, we find that it is possible to place constraints on the ratio of young to old stars (which we parametrize in terms of the average age of the galaxy), as well as the metallicity of the galaxy, using optical and near-infrared colours. LSBGs have a wide range of morphologies and stellar populations, ranging from older, high-metallicity earlier types to much younger and lower-metallicity late-type galaxies. Despite this wide range of star formation histories, we find that colour gradients are common in LSBGs. These are most naturally interpreted as gradients in mean stellar age, with the outer regions of LSBGs having lower ages than their inner regions. In an attempt to understand what drives the differences in LSBG stellar populations, we compare LSBG average ages and metallicities with their physical parameters. Strong correlations are seen between an LSBG's star formation history and its K-band surface brightness, K-band absolute magnitude and gas fraction. These correlations are consistent with a scenario in which the star formation history of an LSBG primarily correlates with its surface density and its metallicity correlates with both its mass and its surface densit

    The Stellar Populations of Low Surface Brightness Galaxies

    Get PDF
    Near-infrared (NIR) K' images of a sample of five low surface brightness disc galaxies (LSBGs) were combined with optical data, with the aim of constraining their star formation histories. Both red and blue LSBGs were imaged to enable comparison of their stellar populations. For both types of galaxy strong colour gradients were found, consistent with mean stellar age gradients. Very low stellar metallicities were ruled out on the basis of metallicity-sensitive optical-NIR colours. These five galaxies suggest that red and blue LSBGs have very different star formation histories and represent two independent routes to low B band surface brightness. Blue LSBGs are well described by models with low, roughly constant star formation rates, whereas red LSBGs are better described by a `faded disc' scenario.Comment: 5 pages LaTeX; 2 embedded figures; MNRAS Letters, Accepte

    Reducing the Read Noise of HAWAII-2RG Detector Systems with Improved Reference Sampling and Subtraction (IRS2)

    Get PDF
    IRS2 is a Wiener-optimal approach to using all of the reference information that Teledyne's HAWAII-2RG detector arrays provide. Using a new readout pattern, IRS2 regularly interleaves reference pixels with the normal pixels during readout. This differs from conventional clocking, in which the reference pixels are read out infrequently, and only in a few rows and columns around the outside edges of the detector array. During calibration, the data are processed in Fourier space, which is <;:lose to the noise's eigenspace. Using IRS2, we have reduced the read noise of the James Webb Space Telescope Near Infrared Spectrograph by 15% compared to conventional readout. We are attempting to achieve further gains by calibrating out recently recognized non-stationary noise that appears at the frame rate
    corecore